Інтегровані технології та енергозбереження
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65760
В публікаціях журналу виконується аналіз розвитку енергетики та сучасних методів енергозбереження. Розглядаються питання та проблеми сучасної енергетики, енерготехнології енергоємних галузей промисловості; нетрадиційної енергетики, ресурсозбереження; питання моделювання процесів промислового обладнання, процеси та обладнання різноманітних галузей промисловості (хімічної, харчової, комунальної енергетики, медичного обладнання тощо); питання автоматизованих систем управління та обробки інформації, тепло- та масообмінні процеси та обладнання спеціальної техніки; питання та проблеми електроенергетики та енергетичного менеджменту.
Рік заснування: 1998. Періодичність: 4 рази на рік.
Новини
Переглянути
Результати пошуку
Документ Параметри теплообмінників гарячого водопостачання для теплових пунктів утеплених будівель при одноступінчастій схемі приєднання(Національний технічний університет "Харківський політехнічний інститут", 2024) Алексахін, Олександр Олексійович; Круглякова, Ольга Володимирівна; Бобловський, Олександр Володимирович; Тютюник, Л. І.Розглянуто особливості функціонування централізованих систем теплопостачання житлових мікрорайонів при проведенні робіт з «утеплення» існуючих будівель, а саме, показники роботи підігрівних установок гарячого водопостачання. Проаналізовано вплив величини зменшення опалювального навантаження внаслідок проведення робіт з підвищення опору теплопередачі конструкцій будівлі на витрати мережної води і площу теплопередачі теплообмінних апаратів гарячого водопостачання. Оцінки проведено для умов використання одноступінчастої паралельної схеми приєднання теплообмінників до розподільних теплових мереж. При обчисленні площі поверхні теплопередачі використано відомі співвідношення для коефіцієнтів теплообміну для таких найбільш вживаних у системах теплопостачання теплообмінників, якими є пластинчасті апарати. Визначено діапазон зміни площі поверхні теплопередачі підігрівників гарячої води і витрат мережної води залежно від співвідношення максимальних теплових навантажень гарячого водопостачання та опалення будівлі і величини ступеня ефективності утеплення споруди. Запропоновано формули для визначення параметрів теплообмінних апаратів гарячого водопостачання. Формули справедливі у діапазоні зменшення витрат теплоти на опалення внаслідок утеплення будівлі від 0 до 35 %. Оцінку зменшення опалювального навантаження проведено за умови забезпечення при термомодернізації будівлі, що споруджена за нормами, які діяли декілька десятиліть тому, сучасних вимог до величини термічного опору будівельних конструкцій. Температуру води у системі опалення утепленої будівлі визначено залежно від величини ступеня ефективності утеплення споруди при умові, що витрати води через систему опалення будівлі до її утеплення і після незмінні. Прийнятий до розгляду діапазон зміни співвідношення теплових навантажень гарячого водопостачання і опалення становить 0,6–1,2.Документ Розрахунок процесів паро- і кристалоутворення при теплообміні в плівкових випарних апаратах(Національний технічний університет "Харківський політехнічний інститут", 2024) Павлова, Вікторія Геннадіївна; Кошельнік, Олександр Вадимович; Пугачова, Тетяна Миколаївна; Круглякова, Ольга ВолодимирівнаУ різних галузях промисловості знаходять широке застосування процеси кипіння розчинів з виділенням розчинних у них солей. Нині існують різні типи випарних установок, застосування яких залежить від технологічних особливостей процесу випарювання і вимог до оброблюваного продукту. Найефективнішими як з економічної точки зору, так і з точки зору отримання якісного готового продукту, є плівкові випарні апарати, теплообмінні процеси в яких протікають у турбулентній плівці, що стікає. Застосування плівкових випарних апаратів зазвичай обмежують чистотою оброблюваного розчину. Однак за наявності в початковому розчині невеликої кількості готових частинок цих солей (рідинна суспензія) можливе розширення сфери застосування даного типу апарату. У зв'язку зі сказаним дослідження процесів тепломасообміну в турбулентній плівці багатофазної рідинної суспензії, що стікає та розробка їх математичного опису представляє теоретичний і практичний інтерес. У роботі представлена математична модель плівкової течії 3-х фазної суспензії. При цьому виходили з наступного: рідина суспензія складається з рідкої та твердої фаз. Рідинна суспензія складається з рідкої та твердої фаз. Рідка фаза являє собою багатокомпонентну систему, що містить розчинник, компоненти, які кристалізуються і не кристалізуються. Течія плівки рідинної суспензії, що стікає, відбувається під дією гравітаційних сил і сил поверхневого натягу на межі суспензія-пара (рух пари збігається з рухом плівки). Відносною швидкістю руху твердих частинок у плівці суцільного середовища, що стікає, можна знехтувати внаслідок їхнього хаотичного переміщення, швидкість течії плівки можна вважати постійною. Турбулентність плівки, що стікає, має місце по всій довжині і спричинена хаотичним переміщенням дисперсної фази, що призводить до однакової температури рідкої та твердої фази та теплофізичних параметрів у поперечному перерізі плівки. Під час стікання рідинної суспензії вздовж поверхні, що обігрівається, завдяки видаленню розчинника під час кипіння на поверхні плівки відбувається зміна концентрацій рідкої фази і кількості твердої фази. Кількість новоутвореної твердої фази значно менша від об'єму загальної маси кристалів, що перебувають у суспензії. Представлена в роботі модель відображає фізичну сутність процесу випаровування в плівці багатофазної суспензії, що стікає, і містить рівняння руху, нерозривності, енергії, рівняння зміни концентрацій фаз і теплообміну.Документ Перспективи використання альтернативних видів палива для опалення регенеративних повітронагрівачів доменних печей(Національний технічний університет "Харківський політехнічний інститут", 2023) Кошельнік, Олександр Вадимович; Гойсан, С. Б.; Пугачова, Тетяна Миколаївна; Круглякова, Ольга Володимирівна; Павлова, Вікторія ГеннадіївнаПроаналізовано можливість використання штучного газоподібного палива – звалищного газу – для опалення регенеративних повітронагрівачів печей доменного виробництва. Підвищення температури доменного дуття є одним з найбільш ефективних способів економії металургійного коксу та збільшення продуктивності доменних печей. Для цього в якості палива для регенеративних теплообмінників використовується суміш доменного та коксового газів. Враховуючи існуючий сьогодні дефіцит коксового газу, в якості висококалорійної добавки пропонується використання звалищного газу, основним горючим елементом якого є метан. Проведені розрахунки горіння суміші газоподібних палив в трьох комбінаціях: доменних газ, коксо-доменна суміш та суміш доменного та звалищного газів. Розглядалася можливість підвищення температури гарячого дуття до 1250 °С в системі повітропостачання доменної печі об'ємом 1033 м³ . Для досягнення заданої температури необхідний рівень адіабатної температури горіння повинен складати 1423 °С, а температури димових газів під куполом – 1300 °С. Даний рівень температури неможливо досягнути при використанні тільки доменного газу, тому розглядалися два варіанти: використання коксо-доменної суміші з вмістом коксового газу 6,3 % та одночасним нагріванням повітря горіння до 180 °С за рахунок теплоти відхідних газів доменних повітронагрівачів, а також спалювання суміші доменного та звалищного газів з нагріванням повітря горіння до 180 °С (вміст звалищного газу при цьому – 7,6 %). Витрата суміші палив в останньому випадку складає 68523 м³ /год, тобто необхідна кількість звалищного газу дорівнює 5208 м³ /год. Обсяги виходу газу на звалищах великих міст складають 5–10 млн.м³ /рік, що є меншим ніж необхідна кількість біогазу для опалення повітронагрівача. Тому має сенс розглядати для досягнення необхідного рівня температур використання суміші трьох газів – доменного, кокосового та звалищного у відповідних співвідношеннях. Використання звалищного газу також сприяє вирішенню важливої екологічної проблеми забруднення земель та атмосфери при накопичування твердих побутових відходів.Документ Експериментальне дослідження елементарних актів гідродинаміки та теплообміну при взаємодії крапель і плівки води з поверхнею прокатного валку(Національний технічний університет "Харківський політехнічний інститут", 2022) Пересьолков, Олександр Романович; Круглякова, Ольга ВолодимирівнаПроведено експериментальні дослідження граничних умов теплообміну для термонапруженого стану прокатних валків під час їх обробки в установці теплової підготовки під час зрошення поверхні плоскофакельними форсунками. Показано, що гідродинамічні умови на поверхні, що зрошується, формуються як в результаті надходження з плоскофакельної форсунки «первинної» диспергованої води, так і «вторинної» рідини, що надходить із сусідніх ділянок у вигляді відбитих крапель і плівок. Вплив на теплообмін окремих факторів, що формують гідродинамічні умови на зрошувальній поверхні, вивчався окремо. Інтенсивність тепловіддачі досліджувалася залежно від густини зрошення, перепаду тиску на плоскофакельній форсунці та температури охолоджуваної поверхні при натіканні «первинного» крапельного потоку на поверхню теплообміну. Локальні значення густини зрошення краплями поверхні під факелом плоскофакельної форсунки вимірювалися за допомогою добірної трубки, що переміщується координатником. При цьому виключалося потрапляння до неї «вторинної» рідини. Питомий тепловий потік та коефіцієнт тепловіддачі визначався за допомогою тепломіра, виконаного з ніхромової стрічки, що нагрівається постійним струмом. При цьому забезпечувалась ізотермічність поверхні вимірювальної ділянки. Термопарами вимірювали температуру нижньої поверхні стрічки, і потім розраховувалася стаціонарна температура верхньої зрошуваної краплями поверхні тепломіра. В результаті багатофакторного аналізу експериментальних даних отримано кореляційну залежність коефіцієнта теплообміну від локальних умов зрошення поверхні тепломіра. Також проводилися дослідження теплообміну під час течії плівки води поверхнею тепломіра. Аналогічна ситуація має місце при розтіканні води із зон зрошення поверхні валка сусідніми плоскофакельними форсунками. Отримана кореляційна залежність коефіцієнта тепловіддачі від швидкості руху плівки води та температури поверхні, що охолоджується. Дослідження тепловіддачі при спільній взаємодії з поверхнею теплообміну плівки води, що рухається, і крапельного потоку, що надходить від плоскофакельної форсунки, показали, що інтенсивність тепловіддачі становить приблизно 80-90 % від арифметичної суми коефіцієнтів, отриманих при роздільному охолодженні тепломіра краплями і плівкою води.Документ Оцінки зміни площі опалювальних теплообмінників для індивідуальних теплових пунктів при зміні графіка температур розподільної теплової мережі(Національний технічний університет "Харківський політехнічний інститут", 2022) Алексахін, Олександр Олексійович; Круглякова, Ольга Володимирівна; Бобловський, Олександр ВолодимировичРозглянуто особливості функціонування централізованих систем теплопостачання житлових мікрорайонів при проведенні робіт з «утеплення» існуючих будівель. Проаналізовано вплив температури теплоносія у розподільній тепловій мережі мікрорайону на величину площі поверхні теплопередачі теплообмінних апаратів, які використовують у схемах індивідуальних теплових пунктів при незалежному приєднанні систем опалення будівель до теплових мереж. Оцінки проведено для пластинчастого теплообмінного апарату з протиточною схемою руху теплоносіїв. Отримано формули для обчислення зміни площі теплообміну підігрівника мережної води відносно площі розрахункового «базового» варіанту виконання апарату залежно від величини перевищення температури води у мікрорайонній мережі над температурою теплоносія у системі опалення будівлі. При визначенні коефіцієнтів теплообміну у каналах теплообмінників використано відомі критеріальні рівняння для таких найбільш вживаних у системах теплопостачання теплообмінників, якими є пластинчасті апарати. У запропонованих формулах враховано вплив величини співвідношення теплових еквівалентів витрат середовищ через теплообмінний апарат і зменшення витрат теплоти на опалення внаслідок утеплення будівлі. Оцінку зменшення опалювального навантаження проведено за умови забезпечення при термомодернізації будівлі, що споруджена за нормами, які були чинними декілька десятиліть тому, сучасних вимог до величини термічного опору будівельних конструкцій. Аналіз результатів обчислень дозволив сформулювати рекомендації щодо вибору розрахункових різниць температур мережної води, при яких слід очікувати зменшення площі поверхні теплопередачі пластинчастих апаратів індивідуальних теплових пунктів утеплених будівель. Запропоновані рекомендації можуть бути корисними при розробці графіка якісного регулювання відпуску теплоти до систем централізованого теплопостачання будівель мікрорайону після завершення робіт з їх утеплення.Документ Особливості застосування теплоакумулюючих елементів з фазовим переходом в регенеративних теплообмінниках скловарних печей(Національний технічний університет "Харківський політехнічний інститут", 2022) Кошельнік, Олександр Вадимович; Гойсан, С. Б.; Пугачова, Тетяна Миколаївна; Круглякова, Ольга Володимирівна; Павлова, Вікторія ГеннадіївнаПідвищення температури повітря горіння в регенеративних теплообмінниках є одним з найбільш ефективних засобів підвищення ККД скловарних печей та зниження витрати палива в них. Величина втрат із димовими газами в печах залишається доволі високою і становить 25–40 %. Внаслідок цього виникає питання у модернізації утилізаторів димових газів скловарних печей, мета якої – збільшення кількості відібраної теплоти від димових газів без суттєвої зміни габаритних розмірів, а також аеродинамічних характеристик теплообмінників. Одним із таких заходів є використання теплоакумулюючих елементів з фазовим переходом в насадці регенераторів. Особливістю таких матеріалів є наявність «залишкової» теплоти фазового переходу, тобто така насадка буде отримувати та передавати більше теплоти на цю величину в порівнянні з традиційною. Однак при вирішенні цього завдання виникає питання вибору плавкої вставки, яка б задовольняла умовам роботи насадки регенеративних теплообмінників скловарних печей. В роботі проаналізовані теплофізичні властивості деяких неорганічних речовини, характеристики яких дозволяють використовувати їх в якості плавкої вставки для елементів насадки. Однак, на даний момент, практичного використання для високотемпературних установок (регенеративні теплообмінники доменних печей металургійного виробництва) набули неорганічні сполуки сульфату барію BaSO₄ та сульфату натрію Na₂SO₄ в поєднанні із магнезитовими та периклазовими вогнетривами. Такі матеріали показали хорошу температурну стабільність та стійкість при циклічних теплових навантаженнях. Дослідження можливості використання матеріалів з фазовим переходом для теплоакумулюючих елементів насадок пов'язано з необхідністю математичного моделювання складних теплообмінних процесів в робочому просторі регенеративних теплообмінників за умов квазістаціонарного режиму їх роботи. Тому остаточні висновки щодо ефективності модернізації регенеративних теплообмінників шляхом використання насадки з фазовим переходом можливо зробити тільки за результатами додаткових досліджень, в яких буде визначено вплив цілого комплексу різних факторів, що впливають на експлуатаційні характеристики теплоакумулюючих елементів даної конструкції.