Інтегровані технології та енергозбереження
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65760
В публікаціях журналу виконується аналіз розвитку енергетики та сучасних методів енергозбереження. Розглядаються питання та проблеми сучасної енергетики, енерготехнології енергоємних галузей промисловості; нетрадиційної енергетики, ресурсозбереження; питання моделювання процесів промислового обладнання, процеси та обладнання різноманітних галузей промисловості (хімічної, харчової, комунальної енергетики, медичного обладнання тощо); питання автоматизованих систем управління та обробки інформації, тепло- та масообмінні процеси та обладнання спеціальної техніки; питання та проблеми електроенергетики та енергетичного менеджменту.
Рік заснування: 1998. Періодичність: 4 рази на рік.
Новини
Переглянути
Результати пошуку
Документ Визначення змінних стану дискретного пневмоприводу шляхом використання методу січних при лінеаризації математичної моделі(Національний технічний університет "Харківський політехнічний інститут", 2024) Крутіков, Геннадій Анатолійович; Бородін, Дмитро ЮрійовичПневмопривід як термодинамічна система описується з урахуванням принципів «термодинамики тіла змінної маси». При описі термодинамічних і газодинамічних процесів у пнемоприводах склалися дві наукові школи: дослідники першої школи представляють процеси в порожнинах приводу як політропічні процеси зі змінним показником політопи, а другі- розглядають процеси спираючись на рівняння енергетичного (теплового) балансу газа у незамкнених поржнинах. Авторами досліджується нелінійна математична модель, отримана на уявленнях другої школи. У цілях скорочення числа незалежних парметрів, визначальних характер перехідного процеса у приводі, здійснено перехід до безрозмірної формі рівнянь, проведений з урахуванням принципу мінімізації безрозмірних комплексів (критеріїв динаамічного подоби), визначальних характер перехідного процесу. Завдання лінеаризації нелінійної моделі ставилося з метою отримання на основі лінійної моделі аналітичних виразів для всіх змінних станів, які дозволять уникнути при розрахунках чисельних крокових методів інтегрування вихідної нелінійної моделі. Показано, що заміна нелінійних залежностей першими членами їх розкладання до ряду Тейлора (метод дотичної), яка практикується для слідкувальних гідропневмоприводів по відношенню до дискретних приводів призводить до великих похибок. Запропонована лінепризація методом січних з вибором оптимальної форми сіючої дозволила значно підвищити розрахункову точність лінійної математичної моделі. та отримати в аналітичній формі змінні стани пневмоприводу.Проведені розрахунки за лінійною моделлю другого порядку переконливо свідчать, що вона цілком адекватна розрахункової точності нелінійної математичної моделі. У всьому діапазоні найімовірніших параметрів розрахункова точність математичної моделі другого порядку є цілком достатньою для практичного використання. Таким чином, виключається необхідність залучення крокових чисельних методів інтегрування рівнянь нелінійної моделі та організації обчислювального процесу на ЕОМ.Документ Математичне моделювання газопроводу системи газоочищення у виробництві сталі(Національний технічний університет "Харківський політехнічний інститут", 2024) Шутинський, Олексій Григорович; Снурніков, Д. В.Система газоочищення (СГ) – технологічний комплекс котел-утилізатор – газоочищення – димосос, що складається з ряду взаємопов'язаних підсистем, які містять численні елементи управління. Очищення димових газів перед викидом їх димососом в атмосферу є складними технологічним процесом [1]. Відділення тепла в системах газоочищення є основною задачею. У зв'язку з цим до її роботи пред'являються жорсткі вимоги, що визначаються якістю газу, що очищується і продуктивністю відділення. Завдання цеху очищення газу – витягувати з забрудненого газу пил при стабільній роботі устаткування. Від стабільної роботи всієї системи залежить якість газу, що очищується, економічна ефективність встановленого устаткування, витрати на ремонт і обслуговування, та витрати за викид в атмосферу [7]. Для оптимального режиму роботи системи необхідно забезпечити плавність управління технологічним процесом. У результаті проведення експерименту по зняттю тимчасової характеристики в газопроводі було нанесено збурюючу дію – ступінчаста зміна витрати оборотної води щодо номінального на 8 %, з 170 м3/год. до 185 м3/год. Для визначення цих величин була отримана експериментальна крива розгону об'єкту по каналу «витрата оборотної води – температура забрудненого газу на вході до труб Вентурі». Для виділення дійсної перехідної характеристики застосовують різні методи згладжування. Для згладжування значень у даному випадку застосовується метод ковзаю чого усереднювання [8]. Апроксимація – заміна графіка математичними виразами. Динамічні властивості об'єкту регулювання характеризуються диференціальними виразами, перехідними і передавальними функціями, частотними характеристиками, між якими існує однозначна залежність. При розрахунку автоматичних систем регулювання, математичну модель зручно представити у вигляді передавальної характеристики. Отримати її можна в результаті апроксимації тимчасової характеристики. Розроблена велика кількість методів аналізу перехідної характеристики з метою отримання передавальної функції лінійного об'єкту регулювання [3]. Суть методів полягає у визначенні коефіцієнтів передавальної функції, заздалегідь вибраного методу, підстановка яких зводиться до отримання розрахункової характеристики найкращим чином співпадаючою з експериментальною. Існує декілька методів апроксимації: графічно-логарифмічний, метод площ, метод вирішення диференціальних рівнянь, і ін. Розрахунок здійснюється за допомогою ЕОМ. Початковими даними для розрахунку є експериментальна перехідна характеристика об'єкту, задана у вигляді рівновіддалених за годиною ординат і величина вхідного сигналу. Для апроксимації перехідної характеристики даного об'єкту використовуємо метод Сімою [6,9]. Метод Сімою є універсальним методом апроксимації, що дозволяє отримати апроксимуючі вирази будь-якого порядку. Цей метод дуже зручний для обробки на ЕОМ, він легко алгоритмізується та відрізняється великою точністю. У результаті проведення апроксимації отримана передавальна функція об'єкту, тобто його математична модель.Документ Математична модель процесу очищення газоповітряного потоку від діоксиду сірки у виробництві ПАР(Національний технічний університет "Харківський політехнічний інститут", 2024) Дзевочко, Олександр Михайлович; Подустов, Михайло Олексійович; Дзевочко, Альона Ігорівна; Панасенко, Володимир Олексійович; Пашко, А. І.Наведено стадії виробництва поверхнево-активних речовин: отримання сульфатуючого агенту, сульфатування, нейтралізація, очищення газоповітряного потоку. Показано отримання сульфатуючого агенту шляхом каталітичного окислення двооксиду сірки. Ступінь окислення 98–99 %. Непрореагований SO2 необхідно подати на стадію очищення. Наведено дані найбільшого забруднювача атмосферного повітря, це двооксид сірки. Показано використання газорідинних операцій в різних галузях промисловості. Серед найбільш важливих газорідинних систем є абсорбція, яка визначається як операція масообміну, під час якої один із компонентів, що міститься в газоповітряній суміші розчиняється в рідинному розчиннику. Показано базування науково-технічного прогресу на тісному взаємозв’язку теорії й експерименту. Основою для проведення наукових досліджень є процес моделювання. Процес моделювання створює передумови для найбільш доцільного поєднання теорії й експерименту в наукових дослідженнях. Наведено опис даних з літератури з математичним моделюванням насадкових абсорберів для різних систем газ – рідина. Показано важливість математичного моделювання та його використання в комп’ютерному моделюванні. Наведено данні про більшість реакцій в хімічній промисловості містять речовини, які існують в різних фазах. Показано про відповідальність двооксиду сірки за утворення кислотних дощів, які є однією з поширених форм забруднення в усьому світі, що завдає шкоди людині та навколишньому середовищу. Наведено, що підхід до проектування насадкового абсорберу зазвичай включає визначення геометричних параметрів, таких як діаметр абсорберу, висота насадки, а також коефіцієнт масообміну для газу і потоку рідини, сухі і загальні перепади тиску, загальний коефіцієнт масопередачі. Показано, що використання методів імітації та математичного моделювання для проектування або оптимізації абсорберів постійно розвивається. Найбільш розроблених і поширених комп’ютерних програм є програмне забезпечення MATLAB. Наведено опис типового насадкового абсорберу, який складається з вертикальної циліндричної оболонки, що містить опорну пластину для насадкового матеріалу, пристрій для розподілу рідини. Рідина подається у верхній частині абсорберу та стікає через насадку. Газоповітряний потік подається в нижній частині абсорберу. Приведена принципова схема насадкового абсорберу. Наведена математична модель процесу очищення газоповітряного потоку від SO2 в насадковому абсорбері. Приведені рівняння матеріального балансу, розрахунку швидкості газоповітряного потоку та діаметру абсорбера, розрахунку висоти насадки, рівняння розрахунку коефіцієнтів масовіддачі та масопередачі, рівняння гідравлічного опору сухої насадки та загального опору зрошуваної насадки.Документ Дослідження водогрійного котла системи централізованого теплопостачання як об'єкта керування(Національний технічний університет "Харківський політехнічний інститут", 2023) Снурніков, Д. В.; Красніков, Ігор Леонідович; Бабіченко, Анатолій КостянтиновичПроведено аналіз умов функціонування типової системи централізованого теплопостачання великого міста, зокрема водогрійного газового котла. Показано, що котел, як основний об'єкт керування, працює в умовах постійної зміни зовнішнього теплового навантаження, що обумовлює внаслідок їх випадкового характеру дії низку невизначеностей. Обґрунтована доцільність математичного опису невизначеностей з використанням стохастичного методу, як найбільш апробованого в практичних умовах. За результатами проведеного пасивного експерименту на водогрійному газовому котлі КВГ-6,5-150 системи централізованого теплопостачання одного з районів м. Харкова був отриманий масив погодинних експериментальних даних, що відображають основні показники роботи водогрійного котла. В результаті обробки даних методом найменших квадратів отримана математична модель котла у вигляді лінійного рівняння регресії, яке відображає зв'язок температури теплоносія на виході котла із температурою навколишнього повітря, температурою теплоносія на вході в котел і з витратами природного газу і теплоносія в котел. Виконана перевірка отриманого рівняння регресії за статистичним критерієм Стьюдента, яка підтвердила значущість усіх коефіцієнтів регресійної моделі. Проведена оцінка щодо практичної значущості рівняння множинної регресії за допомогою коефіцієнту детермінації. Якість рівняння множинної регресії в цілому оцінювалась за допомогою F-критерію Фішера. Так як паралельні опити не проводились, то замість перевірки адекватності проводилась оцінка якості апроксимації дослідних точок прийнятим рівнянням регресії, тобто перевірялось, чи має сенс це рівняння. Така перевірка проводилась порівнянням залишкової дисперсії та дисперсії відносно середнього. Результати розрахунків показали, що значення критерія детермінації значно перевищує допустиме значення, а фактичне значення критерію Фішера суттєво перевищує табличне. Отримані показники дозволили зробити висновок, що зв'язок між змінними в регресійній моделі суттєвий, а запропонований стохастичний метод та отримане рівняння множинної лінійної регресії можна використовувати для прийняття рішень в процесі синтезу технічної структури комп'ютерно-інтегрованої системи керування об'єктами централізованої системи теплопостачання.