2019
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/40562
Переглянути
2 результатів
Результати пошуку
Документ Динамічний аналіз позиційних пневмоагрегатів(Національний технічний університет "Харківський політехнічний інститут", 2019) Фатєєв, Олександр Миколайович; Фатєєва, Надія Миколаївна; Шевченко, Наталія ГригорівнаРозглянуто аналіз динаміки позиційного пневмоагрегата, реалізованого на дискретній апаратурі. Для цього розроблено математичну модель роботи системи позиційних пневмоагрегатів з програмованими електронними блоками управління, що дозволяє враховувати особливості системи пневмоагрегатів, й включає математичні моделі виконавчого механізму, модель ліній управління й модель системи управління з врахуванням реального масштабу часу. В результаті досліджень розроблено методику оцінки функціональних можливостей пневмоагрегата, з точки зору його динаміки, що дозволяє оцінити в якій мірі даний пневмоагрегат може забезпечити виконання потрібних за технологічним процесом характеристик, таких як: швидкодія, вантажопідйомність, точність відпрацювання задаючого сигналу та ін. Ця задача була вирішена на базі зворотної задачі динамічного розрахунку пневмоагрегата, яка полягала в знаходженні конструктивних параметрів за заданими технічними характеристиками, для цього була визначена функція позиціювання, що описується для семи та одинадцяти інтервалів руху і яка відповідає таким вимогам позиційного пневмоагрегата: нерозривність значень основних параметрів руху – переміщення, швидкості, прискорення; стійкість розгону і гальмування, що полягає в рівності нулю значень швидкості і прискорення в початковий і кінцевий моменти руху; мінімальність перевантажень, що складається в забезпеченні мінімальності значень прискорення протягом усього періоду руху пневмоагрегата; максимальна продуктивність, що полягає в забезпеченні мінімальності часу руху. На підставі функції позиціювання отримано закони руху вихідної ланки позиційного пневмоагрегата, що дозволяє забезпечити задані технічні характеристики, та забезпечує плавний розгін вихідної ланки пневмоагрегата, потім його рух із постійною швидкістю та плавне гальмування із зупинкою в точці позиціювання. Для використання отриманих результатів при проектуванні розроблена програма в середовищі MATLAB.Документ Исследование течения жидкости в зоне «спираль – статор» гидротурбины РО 310 с плоскими кольцами статора(Национальный технический университет "Харьковский политехнический институт", 2019) Шевченко, Наталья Григорьевна; Гришин, Александр Мефодиевич; Коваль, Елена СергеевнаРассматривается один из ответственных узлов гидроагрегата – узел «спиральная камера – статор». Статор гидротурбины является подводящим элементом проточного тракта гидротурбины, который участвует в формировании потока перед рабочим колесом. В работе рассмотрена конструкция статора с плоскими кольцами, колонны которых вдвинуты в спиральную камеру. Такая конструкция статора позволяет сохранить основные габаритные размеры спирали в плане для гидротурбин с встроенным кольцевым затвором. Информационный анализ показал, что наряду с конструктивными и технологическими преимуществами, применение колец статора колонны, которые вдвинуты в спиральную камеру, имеют гидродинамические недостатки. При рассматриваемой конструкции узла «спираль – статор с плоскими кольцами», деформируется эпюра меридиональной составляющей скорости. В итоге могут увеличиться потери энергии, связанные с отрывом потока и вторичными течениями в спиральной камере. Представлены гидродинамические исследования структуры потока в зоне спираль статор с плоскими кольцами – экспериментальные и численные расчеты. Предлагается для исследования формы колец статора провести расчет осесимметричного течения в ограниченной расчетной зоне «спираль – статор» гидротурбины с использованием двухслойной модели движения вязкой жидкости. Приведены экспериментальные данные замера давления на поверхности колец статора. Сопоставление расчетных и экспериментальных данных дает качественное совпадение. Для трех вариантов колец статора в работе проведен расчет пограничного слоя. Результаты показали, что максимальное загромождение пограничного слоя канала статора достигает 5,2 %. Для исследуемых вариантов колец статора местного отрыва пограничного слоя не наблюдается. Проведены расчеты профильных и ударных потерь в решетке колонн статора для исследуемой конструкции подвода гидротурбины.