2019

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/40562

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Моделирование процесса позиционирования подъемного «крана-шара»
    (Национальный технический университет "Харьковский политехнический институт", 2019) Шамардина, Вера Николаевна; Пилипенко, Владимир Владимирович
    В труднодоступных местах выполнение транспортных и подъемных операций с грузами сопряжено, как правило, со значительными финансовыми расходами и представляет собой сложную инженерную задачу. Одним из вариантов ее решения может быть использование грузоподъемного крана-шара. Он представляет собой наполненный «легким» газом воздушный шар, снабженный системой тросов (строп) для подвеса груза к шару и соединения шара с тремя надежно закрепленными на грунте приводными электродвигателями, которые вращают барабаны с намотанными тросами. Цель работы состоит в выполнении математического описания и имитационного моделирования движения объектов электромеханической системы «кран-шар» с автоматизированным электроприводом, в оценке возможности обеспечения точного позиционирования груза при использовании электропривода постоянного тока с системой подчиненного регулирования. В рассматриваемой электромеханической системе перемещаемый груз имеет пять степеней свободы, динамические процессы описываются системой из пяти нелинейных дифференциальных уравнений Лагранжа второго рода в соответствующих координатах. Линеаризация уравнений выполнена путем разложения в ряд Тейлора, ограничив представление нелинейностей первыми двумя членами ряда. Позиционирование шара и груза в пространстве обеспечивается путем изменения длин тросов, удерживающих шар. Поэтому при синтезе позиционной системы управления электроприводами барабанов были определены зависимости требуемых длин тросов в функции заданных координат шара (груза) в пространстве координат x, y, z. С учетом принятых допущений и требований ограничения колебаний груза получена достаточно сложная структурная имитационная модель, содержащая несколько вычислительных блоков, связанных между собой в соответствии с алгоритмом функционирования системы. Предложенная математическая модель объекта и проведенные в ходе структурного моделирования в среде Matlab исследования переходных процессов показали возможность решения задачи позиционирования груза путем использования трехконтурной системы подчиненного регулирования (контуры регулирования электромагнитного момента, частоты вращения двигателя и положения груза) для электроприводов барабанов с тросами, удерживающими шар.
  • Ескіз
    Документ
    Направления исследований индукционных кухонных плит
    (НТУ "ХПИ", 2019) Пантелят, Михаил Гарриевич; Грищук, Юрий Степанович; Чепелюк, Александр Александрович; Елоев, Алан Казбекович
    Широкое использование в современном быту и в ресторанном производстве индукционных кухонных плит делает актуальными задачи расчетного и экспериментального исследования процессов и явлений, имеющих место при их эксплуатации. Представляет интерес составления перечня прикладных задач исследования процессов и конструкций индукционных кухонных плит, решение которых будет представлять интерес с точки зрения совершенствования конструктивных решений и режимов эксплуатации исследуемого оборудования. Обзор литературных источников показал, что авторы исследований индукционных кухонных плит обошли вниманием несколько важных прикладных задач, а именно: − исследование теплового состояния индукционной кухонной плиты в случае выхода из строя ее вентилятора; − исследование распределения электромагнитного поля плиты, а также процессов нагрева посуды и индуктора плиты в следующих ситуациях: нагреваемая посуда расположена не по центру индуктора индукционной кухонной плиты, а смещена и частично занимает часть поверхности плиты, не занятой индуктором; используется посуда меньшего диаметра, чем диаметр индуктора; − исследование процессов в индукционных кухонных плитах и посуде, нагреваемой на разных частотах поля в диапазоне 20-100 кГц; − сравнение распределения электромагнитного поля плиты и теплового поля посуды в случаях наличия и отсутствия магнитопровода в конструкции плиты, а также сравнение процессов при использовании магнитопровода, изготовленного из различных магнитных материалов. Решение указанных задач предлагается выполнять методами компьютерного моделирования мультифизических электромагнитных и тепловых процессов, а также экспериментально.