2021
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/52264
Переглянути
2 результатів
Результати пошуку
Публікація Класифікація робочого стану підшипників кочення за допомогою згорткової нейронної мережі зі змінними факторами дилатації(Національний технічний університет "Харківський політехнічний інститут", 2021) Бабуджан, Руслан Андрійович; Ісаєнков, Костянтин Олександрович; Красій, Данило Максимович; Водка, Олексій Олександрович; Задорожний, Іван В'ячеславович; Ющук, Михайло ВікторовичРобота описує процес обробки даних роботи підшипників кочення, та їх використання в задачі побудови математичної моделі бінарної класифікації робочого стану підшипників методом згорткової нейронної мережі зі змінними факторами дилатаціїї ядер згорткових шарів. Для класифікації підшипників, що мають дефекти, були використані дані віброприскорень з власного випробувального стенду та з набору даних, що знаходяться у вільному доступі. В роботі також було досліджено спосіб узагальнення класифікації сигналів підшипників, що були отримані в результаті принципово різних експериментів, та що мають різний типорозмір. Для уніфікації сигналів пропонується наступний спосіб обробки: виділити ділянки даних із зсувом, перейти до частотного простору за допомогою швидкого перетворення Фур’є, відсікти частоти, що перевищують 10-кратну частоту обертання валу, відновити сигнал зі збереженням 10 періодів обертання валу, відмасштабувати отриманий сигнал діленням його на діаметр орбіти обертання тіла кочення та інтерполювати сигнал на 2048 точок. Даний алгоритм також дає можливість генерувати збалансовану вибірку для побудови математичної моделі. Ця можливість надається за допомогою варіювання кроку розбиття початкового сигналу. Перевага даного алгоритму над класичними методами копіювання чи видалення прикладів постає у створенні нових об’єктів, які уточнюють статистичні параметри генеральної сукупності. Алгоритм обробки сигналу було використано як для задачі бінарної класифікації всередині одного набору даних, так і для навчання на одному та тестуванні на іншому. Для збільшення набору даних для навчання та тестування математичної моделі використовується метод бутстрапування, який засновано на багаторазовій генерації вибірок методом Монте-Карло. Якість математичної моделі бінарної класифікації оцінювалась за часткою правильних відповідей. Задача сформульована як задача мінімізації бінарної перехресної ентропії. Отримані результати представлено в вигляді графіків, демонструючих процес навчання нейронної мережі та графіків щільності розподілу метрик.Публікація Використання методів машинного навчання для бінарної класифікації робочого стану підшипників за сигналами їх віброприскорення(Національний технічний університет "Харківський політехнічний інститут", 2021) Бабуджан, Руслан Андрійович; Ісаєнков, Костянтин Олександрович; Красій, Данило Максимович; Водка, Олексій Олександрович; Задорожний, Іван В'ячеславович; Ющук, Михайло ВікторовичВ роботі досліджується зв’язок між віброприскоренням підшипників з їх робочим станом. Для визначення цих залежностей було побудовано випробувальний стенд та проведено 112 експериментів з різними підшипниками: 100 підшипників, у яких під час експлуатації розвинувся внутрішній дефект та 12 підшипників без дефекту. З отриманих записів було сформовано набір даних, який використовувався для побудови класифікатору та знаходиться у вільному доступі. Був запропонований метод для класифікації нових та використаних підшипників, що полягає у пошуку залежностей та закономірностей сигналу за допомогою описових функцій: статистичних, ентропій, фрактальних розмірностей та інших. Окрім обробки самого сигналу, також використовувалося частотне представлення сигналу роботи підшипників для доповнення простору ознак. У роботі було перевірено можливість узагальнення класифікації для її застосування на тих сигналах, які не були отримані під час лабораторних експериментів. Сторонній набір даних було знайдено у вільному доступі. Цей набір даних був використаний для того, щоб визначити, наскільки точним буде класифікатор, який навчався та тестувався на істотно різних сигналах. Навчання та валідація проводилась методом бутсрапування для викорінення ефекту випадковості з огляду на малий об’єм наявних даних для навчання. Для оцінки якості класифікаторів було використано F1-міру, як основну метрику, через незбалансованість наборів даних. В якості моделей класифікатору були обрані наступні алгоритми машинного навчання з вчителем: логістична регресія, метод опорних векторів, випадковий ліс та метод найближчих сусідів. Результати представлені в вигляді графіків густини розподілу та діаграм.