Дисертації та автореферати
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/16999
Електронна повнотекстова колекція авторефератів та дисертацій, упорядкована за назвами спеціальностей
Переглянути
Документ Дослідження процесів теплопередачі у зварних багатоходових пластинчатих теплообмінних апаратах для хімічної промисловості(Національний технічний університет "Харківський політехнічний інститут", 2020) Арсеньєв, Павло ЮрійовичДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.17.08 «Процеси та обладнання хімічної технології» ‒ (16 ‒ Хімічна та біоінженерія) – Національний технічний університет «Харківський політехнічний інститут» Міністерства освіти і науки України, Харків, 2020 р. Дисертація подана до захисту у спеціалізованої вченої ради Д 64.050.05 в Національному технічному університеті «Харківський політехнічний інститут». Дисертація присвячена вирішенню актуальної науково-практичної задачі підвищення енергетичної ефективності підприємств за рахунок підвищення ефективності процесу рекуперації тепла газів промислових процесів з використанням зварних багатоходових пластинчатих теплообмінних апаратів. Проведено аналітичний огляд науково-технічної інформації щодо підвищення енергетичної ефективності підприємств хімічної промисловості за рахунок рекуперації тепла в технологічних процесах. Показано, що підвищити ефект інтеграції теплових процесів за рахунок збільшення рівня рекуперації тепла дозволяє використання компактних теплообмінників з інтенсифікованою тепловіддачею, таких як пластинчасті теплообмінники. Проаналізовано можливості удосконалення процесу виробництва аміаку за рахунок рекуперації теплової енергії в колонах синтезу. Сформульовано основні вимоги до теплообмінного обладнання для роботи в умовах високого тиску та температур агрегатів синтезу аміаку. Проаналізовано роботи з методами розрахунку пластинчастих теплообмінних апаратів з інтенсифікованим процесом теплопередачі. На базі аналізу теоретичних основ процесу показано, що можливості інтенсифікації теплообмінних процесів в каналах пластинчастих теплообмінників далеко не вичерпані та потребують розвинення підходів щодо прогнозування роботи цих апаратів в умовах рекуперації тепла газових потоків та розробки надійних та точних методів оптимального розрахунку на основі експериментальних та теоретичних досліджень з використанням методів математичного моделювання. Виконано аналіз турбулентного переносу тепла в каналах складної геометричної форми пластинчатих теплообмінних апаратів з перехресним рухом газових теплоносіїв в каналах. Аналіз виконано з залученням аналогії переносу тепла та імпульсу. З використанням трьох шарової моделі турбулентного потоку отримане рівняння для розрахунку тепловіддачі по даним про гідравлічний опір гофрованого поля каналів пластинчатого теплообмінника. Доведено що показник ступеня при числі Прандтля в якості множника в кореляційних рівняннях для розрахунку тепловіддачі в газових потоках в каналах пластинчатих теплообмінниках повинен бути більшим чим для потоків рідин. Для діапазону чисел Прандтля від 0,5 до 7 рекомендовано значення цього ступеня с = 0,5. Наведено опис експериментального стенду та моделі зварного пластинчатого теплообмінника для дослідження процесу теплопередачі та втрат тиску при перехресному русі теплоносіїв в каналах сітчасто-потокового типу утворених круглими гофрованими пластинами. Стенд та його устаткування контрольними та вимірювальними пристроями дозволяє проводити дослідження в достатньому діапазоні зміни основних параметрів процесу та вимірювання розходів, температур та тиску теплоносіїв з достатньою точністю. Експериментальне дослідження теплообміну і падіння тиску в моделі зварного пластинчатого теплообмінника підтвердило для випадку поперечного руху теплоносіїв в апарату справедливість виразів, запропонованих для каналів пластинчатих теплообмінників сітчасто -потокового типу різної геометрії. Також оцінено залежність ефективності теплопередачі (ε) від числа одиниць переносу тепла (NTU) в одному ході пластинчатого теплообмінника з перехресним рухом теплоносіїв. Запропоноване рівняння може використовуватися при розрахунку пластинчатих теплообмінників із загальним зустрічним та перехресним рухом теплоносіїв усередині окремих ходів. Запропоновано рівняння для розрахунку втрат тиску в каналі зварного пластинчатого теплообмінника з урахуванням втрат тиску на основному гофрованому полі та локального гідравлічного опору на вході та виході каналу. Підтверджено адекватність запропонованих рівнянь для розрахунку ефективності теплопередачі та втрат тиску в каналах зварного пластинчатого теплообмінника з круглими пластинами та можливість їх використання в інженерних розрахунках пластинчатих теплообмінників. Розроблено узагальнену математичну модель процесу теплопередачі між однофазними теплоносіями в багатоходовому зварному пластинчатому теплообмінному апарату з перехресно-протитоковим рухом теплоносіїв. Запропонована методика розрахунку дозволяє варіювати тепло-гідравлічні характеристики пакетів пластин з рівнем дискретності, рівним одній пластині в пакеті. Вона реалізована у вигляді програмного забезпечення для розрахунку зварних пластинчатих теплообмінників з перехресно-потоковою схемою руху теплоносіїв на персональному комп'ютері. Розроблено спеціалізовану математичну модель процесу теплопередачі між однофазними теплоносіями в багатоходовому зварному пластинчатому теплообмінному апарату з перехресно-протитоковим рухом теплоносіїв з круглими пластинами для колони синтезу аміаку. Модель дійсна для багатоходових теплообмінників з несиметричним числом ходів в модельованому теплообміннику з відношенням чисел ходів кратнім двом. Модель корисна для розрахунку процесу теплопередачі в експериментальному зразку зварного пластинчатого теплообмінника виготовленого для випробувань в промисловій колоні синтезу аміаку. Розроблено спеціалізовану придатну для виконання оптимізаційних розрахунків модель роботи багатоходового апарата з симетричним розташуванням ходів теплоносіїв. Математична модель описує процес теплопередачі між однофазними теплоносіями в зварному пластинчатому теплообмінному апарату з перехресно-протитоковим рухом теплоносіїв з круглими пластинами для колони синтезу аміаку. Одержано рівняння розрахунку найкращої швидкості течії теплоносіїв, яка забезпечує повне використання заданого падіння тиску гарячого теплоносія при виконанні заданого теплового навантаження теплообмінника. Виконано аналіз результатів випробувань зразка зварного пластинчатого теплообмінника встановленого в промисловій колоні синтезу аміаку на заводі з виробництва аміаку. Наведено опис колони і експериментального зразка теплообмінника.2. Результати промислових випробувань підтвердили придатність зварного пластинчатого теплообмінника для роботи в умовах тиску до 32 МПа и температур до 520 °С колони синтезу аміаку. В промислових умовах підтверджено адекватність розробленої математичної моделі та одержаних в лабораторних іспитах рівнянь покладених в основу розробки її розробки. Показано збільшення на 15 % продуктивності колони по аміаку за рахунок збільшення завантаження каталізатора в колоні та підтверджено переваги використання пластинчатого теплообмінника порівняно з кожух-трубним при роботі в однакових умовах.При дослідженні апарату після двох років його роботи, на протяг часу повного пробігу колони, ніяких залишків старіння каталізатору на поверхні пластин не було виявлено. Це вказує на можливість використання теплообмінників з симетричною схемою ходів теплоносіїв, оскільки несиметрична схема, розроблена для подолання цього явища дає значне зменшення середнього температурного напору і ефективності теплопередачі. Результати випробувань дозволяють рекомендувати поширення використання зварних пластинчатих теплообмінників розробленої конструкції для колон синтезу аміаку. Розроблено алгоритм оптимізації на базі математичної моделі процесу теплообміну в каналах зварних пластинчатих теплообмінників колон синтезу аміаку з рівною кількістю ходів для обох теплоносіїв. Це дозволяє оцінити оптимальні параметри конструкції теплообмінника для заданих умов експлуатації, орієнтуючись на мінімальну площу теплопередачі в якості критерію оптимізації. Була отримана оптимальна конструкція зварного пластинчатого теплообмінника для роботи в колоні синтезу аміаку. Найдешевша конструкція з розглянутою формою гофрування пластин має площу поверхні теплопередачі рівну 68,78 м2 при відстані між пластинами 3,3 мм, з трьома ходами для руху холодного та гарячого теплоносіїв і протитечією руху потоків. Однак найменший теплообмінник, зібраний з існуючих пластин з фіксованою висотою гофри 4 мм, повинен мати чотири проходи і площу теплопередачі 85,12 м2, що на 25% більше, але з запасом 3,1% для теплового навантаження. Розроблена математична модель і алгоритм оптимізації можуть бути використані для оптимального розрахунку геометрії пластин зварних пластинчатих теплообмінників для колон синтезу аміаку різних діаметрів та з різним навантаженням по синтез газу і різними температурами в зоні хімічної реакції синтезу. Математична модель і алгоритм оптимізації можуть також бути використані для оптимального розрахунку теплообмінників із існуючих пластин круглої форми з різним розміщенням гофрів на полі пластини.