Дисертації та автореферати
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/16999
Електронна повнотекстова колекція авторефератів та дисертацій, упорядкована за назвами спеціальностей
Переглянути
10 результатів
Результати пошуку
Документ Фізико-хімічні засади одержання спеціальних цементів на основі композицій системи CaО – BaО – Al₂O₃ – Fe₂O₃ – SiO₂(Національний технічний університет "Харківський політехнічний інститут", 2021) Тараненкова, Вікторія ВіталіївнаДисертація на здобуття наукового ступеня доктора технічних наук зі спеціальності 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. Дисертацію присвячено створенню фізико-хімічних засад одержання спеціальних цементів з високою міцністю, жаро- та вогнетривкістю, сульфатостійкістю, стійкістю до дії жорсткого радіаційного випромінювання на основі силікатів, алю-мінатів, феритів і алюмоферитів кальцію та барію за рахунок цілеспрямованого фо-рмування фазового складу і структури клінкеру та цементного каменю. Запропоновано концепцію розрахунку ентальпій утворення неорганічних оксидних сполук; систематизовано базу термодинамічних даних сполук системи; на основі встановлених фазових рівноваг уточнено та досліджено субсолідусну будову барійвмісних потрійних систем та вперше встановлено будову чотирикомпонентної системи CaО - BaО – Al₂O₃ – Fe₂O₃ багатокомпонентної системи CaО - BaО – Al₂O₃ – Fe₂O₃ – SiO₂; розвинуто та удосконалено теорію оцінки ймовірності прояву в’яжучих властивостей неорганічними оксидними сполуками із залученням концепції електронегативності; виявлено стабільні комбінації фаз, що обумовлюють одер-жання в’яжучих матеріалів поліфункціонального призначення на основі силікатів, алюмінатів, феритів і алюмоферитів кальцію та барію. Встановлено особливості перебігу процесів фазоутворення та гідратації кальційбарійвмісних цементів, визначено фазовий склад клінкерів та продуктів гідратації спеціальних цементів. Розроблено склади високоміцних спеціальних кальційбарійвмісних цементів, визначено їх основні фізико-механічні та технічні властивості. Розроблено ресурсо-зберігаючу технологію отримання кальційбарійвмісних силікатних та алюмінатних цементів з використанням відходів хімічної промисловості. Композиційні матеріали, одержані на основі розроблених спеціальних цементів, апробовано в промислових та напівпромислових умовах з позитивними висновками, а результати досліджень впроваджено у практику навчального процесу.Документ Фізико-хімічні засади одержання спеціальних цементів на основі композицій системи CaО – BaО – Al₂O₃ – Fe₂O₃ – SiO₂(Національний технічний університет "Харківський політехнічний інститут", 2021) Тараненкова, Вікторія ВіталіївнаДисертація на здобуття наукового ступеня доктора технічних наук зі спеціальності 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. Дисертацію присвячено створенню фізико-хімічних засад одержання спеціальних цементів з високою міцністю, жаро- та вогнетривкістю, сульфатостійкістю, стійкістю до дії жорсткого радіаційного випромінювання на основі силікатів, алю-мінатів, феритів і алюмоферитів кальцію та барію за рахунок цілеспрямованого фо-рмування фазового складу і структури клінкеру та цементного каменю. Запропоновано концепцію розрахунку ентальпій утворення неорганічних оксидних сполук; систематизовано базу термодинамічних даних сполук системи; на основі встановлених фазових рівноваг уточнено та досліджено субсолідусну будову барійвмісних потрійних систем та вперше встановлено будову чотирикомпонентної системи CaО - BaО – Al₂O₃ – Fe₂O₃ багатокомпонентної системи CaО - BaО – Al₂O₃ – Fe₂O₃ – SiO₂; розвинуто та удосконалено теорію оцінки ймовірності прояву в’яжучих властивостей неорганічними оксидними сполуками із залученням концепції електронегативності; виявлено стабільні комбінації фаз, що обумовлюють одер-жання в’яжучих матеріалів поліфункціонального призначення на основі силікатів, алюмінатів, феритів і алюмоферитів кальцію та барію. Встановлено особливості перебігу процесів фазоутворення та гідратації кальційбарійвмісних цементів, визначено фазовий склад клінкерів та продуктів гідратації спеціальних цементів. Розроблено склади високоміцних спеціальних кальційбарійвмісних цементів, визначено їх основні фізико-механічні та технічні властивості. Розроблено ресурсо-зберігаючу технологію отримання кальційбарійвмісних силікатних та алюмінатних цементів з використанням відходів хімічної промисловості. Композиційні матеріали, одержані на основі розроблених спеціальних цементів, апробовано в промислових та напівпромислових умовах з позитивними висновками, а результати досліджень впроваджено у практику навчального процесу.Документ Ресурсоощадна технологія тампонажних цементів(Національний технічний університет "Харківський політехнічний інститут", 2020) Дев'ятова, Наталя БорисівнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 161 "Хімічні технології та інженерія". – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021. Об'єкт дослідження – закономірності процесів фазоутворення кальцій алюмоферохромітних клінкерів. Предмет дослідження – фізико-хімічні закономірності формування фазового складу і структури цементного клінкеру та тампонажного розчину на основі системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃. Дисертацію присвячено вирішенню науково-практичної задачі – розробка ресурсоощадної технології тампонажного цементу для "гарячих" свердловин на основі алюмінатів, феритів та хромітів кальцію з використанням відходів хімічної промисловості. В вступі обґрунтовано актуальність теми дисертаційної роботи, зазначено зв'язок роботи з науковими темами, сформульовано мету і задачі дослідження, визначено об'єкт, предмет та методи дослідження, показано наукову новизну та практичне значення отриманих результатів, наведено інформацію про практичне використання, особистий внесок здобувача, апробацію результатів дослідження та їх висвітлення у публікаціях. Приводяться відомості щодо структури та обсягу дисертаційної роботи. В першому розділі описані види сучасних тампонажних цементів, які відносяться до в'яжучих гідратованого тверднення, умови для тверднення цементу в свердловині, вплив зовнішніх факторів на терміни твердіння з урахуванням того, що огляд і точне обстеження стану свердловини неможливі. Розглянуті основні вимоги та властивості тампонажних цементів. Тампонажні цементи повинні характеризуватися необхідною міцністю в перші дві доби тверднення. Міцність затверділого цементного розчину в короткі терміни тверднення повинна забезпечити закріплення колони в стовбурі свердловини. Важливий показник – в'язкість цементного розчину, текучість, що характеризує його. Цемент одного різновиду не може задовольняти всім вимогам, пов'язаним з різними умовами його роботи в свердловинах. Тому сучасна цементна промисловість випускає два основні види тампонажного цементу. Один з них призначений для цементування “холодних” свердловин за низьких та нормальних температур (15 ºС – 50 ºС), а інший – "гарячих" (понад 70 ºС). Цементи випробовують відповідно при 111 ºС і 150 ºС. Виявлено вплив характеристик цементу на реологію цементного розчину, яка визначає загальну поведінку, а також умови експлуатації у свердловинах цементного каменю. На його тверднення істотно впливають: мінералогічний склад цементу, тонкість помелу і речовий склад. Описано тверднення в агресивних середовищах та мінеральний склад цементного каменю. Розглянута система CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃, як основа для розробки тампонажних цементів та підсистеми з яких вона складається. Виділені проблеми, які в даний момент ще не вирішені, а саме вимоги, які вимагають пошуків нових технологічних рішень щодо хімічного та мінералогічного складу в’яжучих матеріалів гідратаційного тверднення та використання відходів хімічної промисловості. Визначено напрями та сформульовано завдання досліджень, спрямованих на отримання складів високоефективних тампонажних цементів на основі чотирикомпонентної системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃, яка буде фізико-хімічної основою розробки складів тампонажних цементів на основі представлених відходів. В другому розділі наведені відомості щодо сировинних матеріалів та каталізаторів, методів виготовлення зразків, а також надана характеристика методів та обладнання для теоретичних і експериментальних досліджень, здійснених в роботі. Теоретичні дослідження проводили з використанням сучасних методів аналізу згідно положень фізичної хімії і термодинаміки силікатів. Для синтезу зразків заданого фазового складу проводилося послідовне подрібнення, змішування і випалення сировинних сумішей. Ретельно подрібнення і змішування сировинних компонентів виконувалось в лабораторному кульовому млині "мокрим способом". Тонкість помелу контролювалася ситовим аналізом. Перед випалюванням сировинні суміші формувалися методом двостороннього пресування при питомому тиску 60 – 80 МПа. Випал брикетів здійснювався в силітовой і криптоловій печах при 1250 ºС і ізотермічних витримках 2 години. Дослідження фазового складу продуктів випалу сировинних сумішей і гідратації в'яжучих матеріалів проводилося за допомогою таких фізико - хімічних методів аналізу як рентгенофазовий (дифрактометр "Дрон - 3М", розшифровка рентгенограм проводилась за Powder Diffraction File), Inorganic Phases. Alphabetical Index (chemical & mineral names), диференційно - термічний (дериватограф Q - 1500 Д системи F. Paulik - J. Paulik - L. Erdey), ІЧ - спектроскопія (інфракрасний фур'є-спектрометр Tensor 27), петрографічний (поляризаційний мікроскоп МІН - 8), електронно-мікроскопічний (JSM -840 scanning microscope). Фізико-механічні випробування цементу проводилися згідно методики малих зразків М. І. Стрєлкова. Технічні властивості розроблених матеріалів визначалися за стандартними методами, згідно ДСТУ Б В.2.7-88-99 (Тампонажні цемент. Технічні умови). Температури і склади евтектики в бінарних перерізах системи розраховувалась за формулами Епстейна-Хоуленд, а в три- і чотирикомпонентних перерізах – шляхом вирішення системи нелінійних рівнянь. В третьому розділі теоретично обґрунтовано за допомогою термодинамічних методів розрахунку: – термодинамічна оцінка імовірності утворення трикомпонентної сполуки Са₆Al₄Cr₂O₁₅ в системі CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃; – уточнення субсолідусної будови трикомпонентної системи CaO – Al₂O₃ – Cr₂O₃, з урахуванням існування сполуки Са₆Al₄Cr₂O₁₅; – уточнення субсолідусної будови чотирикомпонентної системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃; – оцінка температур і складів евтектик полікомпонентних перерізів системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃. На підставі розрахунків була проведена тетраедрація системи та аналіз температур і складів евтектик полікомпонентного перерізу CaAl₂O₄ – CaCr₂O₄ – Сa₁₂Al₁₄O₃₃ – Ca₄Al₂F₂O₁₀ чотирико мпонентн ої системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃, доведено використання складів раціональної області для отримання тампонажних цементів з підвищеною температурою експлуатації, які можуть бути використані для тампонування гарячих газових свердловин промислови х регіонів України. В четвертому розділі після виконання розрахунків по тріангуляції системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃ і в изначення геометро топологічних характеристик її фаз перейшли безпосередньо до отримання в'яжучих матеріалів на основі сполук цієї системи, яким притаманні комплексом спеціальних заданих властивостей. Досліджено відпрацьовані каталізатори СТК - 1 та ГИАП - 14С. Особливості прояву в’яжучих властивостей сполуки Са₆Al₄Cr₂O₁₅. Проведена оптимізація складів та технологічних параметрів синтезу тампонажних цементів на основі сполук системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃. Розроблені склади цементного клінкеру на основ і каталізаторів. За результатам проведених досліджень оптимальним вибрано склад, який відповідає CaAl₂O₄ – 30 мас. %, CaCr₂O₄ – 10 мас. %, Сa₁₂Al₁₄O₃₃ – 30 мас. %, Ca₄Al₂Fе₂O₁₀ – 30 мас. %. Досліджені особливості фазоутворення у цементах системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃. Проведені рентгенографічні дослідження спеків. Вивчені продукти гідратації тампонажних цементів. В п'ятому розділі проведена розробка складів тампонажних розчинів на основі сполук системи CaO – Al₂O₃ – Fe₂O₃ – Cr₂O₃. Проведені дослідженн я можливості використання відпрацьованих каталізаторів СТК 1 та ГИАП 14С у виробництві тампонажних цементів. За результатами провед еного комплексу фізико хімічних досліджень встановлено, що величиною вмісту Al₂O₃, Fe₂O₃ та Сr₂O₃ дані відпрацьовані каталізатори можуть бути використані у складі суміші для отримання цементів, як алюмовмісних, залізовмісних та хромовмісних компонентів, замість алюмінію оксиду, заліза (ІІІ) оксиду та хром (ІІІ) оксиду марки ЧДА, що дозволило розробити ресурсоощадну технологію тампонажних цементів. На основі синтезованого за ресурсозберігаючою технологією тампонажного кальцій алюмоферохромітного цементу розроблені склади тампонажних розчинів. Як наповнювачі запропоновано використовувати природні матеріали, які традиційно використовуються промисловістю - пісок та барит. У результаті дослідження фізико – механічних і технічних властивостей встановлено, що отримані розчини характеризуються високою міцністю як при стиску (до 55 МПа), так і при вигині (до 7,2 МПа), водовідділенням 0,07 см³/г, коефіцієнтом сульфатостійкості 1,31, стійкістю до одночасного впливу підвищених температур і тисків. Промислові випробування тампонажного розчину з використанням як заповнювачів бариту та піску проведено у ТОВ НВП "Моноліт" (м. Костянтинівка), ТОВ "Спецкераміка" (м. Рубіжне). За результатами яких встановлено, що отриманий розчин може бути рекомендований для цементування обсадної колони "гарячої" газодобувної свердловини. Наукові результати впроваджені у навчальний процес кафедри технології кераміки, вогнетривів, скла та емалей Національного технічного університету "Харківський політехнічний інститут".Документ Кобальтвмісний глиноземистий цемент на основі відходів хімічної промисловості(Національний технічний університет "Харківський політехнічний інститут", 2020) Левадна, Світлана ВікторівнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 161 – Хімічні технології та інженерія (16 – Хімічна та біоінженерія). – Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2021. Об'єкт дослідження – закономірності процесів фазоутворення клінкеру глиноземистого цементу на основі кобальтмолібденововмісних відходів в системі CaO – CoO – Al₂O₃ – MoO₃. Предмет дослідження – особливості синтезу глиноземистих цементів на основі композицій системи CaO – CoO – Al₂O₃ – MoO₃ з використанням кобальтмолібденововмісних відходів для отримання вогнетривких матеріалів з комплексом заданих властивостей. Дисертацію присвячено вирішенню науково-практичної задачі – розробці складів глиноземистих цементів з високими експлуатаційними характеристиками на основі сполук системи CaO – CoO – Al₂O₃ – MoO₃ з використанням кобальтмолібденовмісних відходів та бетонів на їх основі. В вступі обґрунтовано актуальність теми дисертаційної роботи, зазначено зв'язок роботи з науковими темами, сформульовано мету і задачі дослідження, визначено об'єкт, предмет та методи дослідження, показано наукову новизну та практичне значення отриманих результатів, наведено інформацію про практичне використання, особистий внесок здобувача, апробацію результатів дослідження та їх висвітлення у публікаціях. Приводяться відомості щодо структури та обсягу дисертаційної роботи. Перший розділ присвячено аналізу сучасної наукової та патентної літератури щодо одержання нових видів та складів вогнетривких цементів та бетонів на їх основі, які мають високу міцність, вогнетривкість, довговічність, можливість експлуатації у високотемпературних режимах та умовах змінних температур. Такі розробки необхідно здійснювати в умовах вичерпування або недостатності якісних вихідних сировинних матеріалів. Використання подібних відходів і побічних продуктів різних галузей промисловості складає один із напрямків розвитку технології в'яжучих матеріалів. Для отримання глиноземистих цементів можливо провести заміну алюмінійвмісного компоненту на аналогічні за своїм складом відходи носіїв каталізаторів, що використовуються на підприємствах хімічної галузі промисловості для очищення викидних газів і різних вуглеводнів та містять понад 70 мас. % Аl₂О₃. Однак, такі відходи містять у своєму складі оксиди кобальту та молібдену. Ймовірність утворення сполук кобальту та молібдену при термічній обробці таких відходів з метою отримання глиноземистих цементів, а також співіснування або взаємодія таких сполук з алюмінатами кальцію зумовлюють необхідність розгляду чотирикомпонентної оксидної системи CaO – CoO – Al₂O₃ – MoO₃, субсолідусна будова якої відсутня у наявній довідковій літературі, що викликає труднощі при створенні нових видів глиноземистих цементів на основі відходів хімічних виробництв. Це визначило напрямок наукових досліджень дисертаційної роботи: проведення теоретичних та експериментальних досліджень будови системи CaO – CoO – Al₂O₃ – MoO₃ в області субсолідуса і розробка вогнетривких цементів на основі її композицій. В другому розділі наведена характеристика вихідних сировинних матеріалів, обґрунтовано можливість використання відходів в технології в'яжучих матеріалів; визначено вибір методик експериментальних досліджень, та розрахункових методів, використаних для виконання дисертаційної роботи. Для дослідження чотирикомпонентної системи CaO – CoO – Al₂O₃ – MoO₃ запропоновано використання комплексу сучасних методів аналізу багатокомпонентних систем: термодинамічний, фізико-хімічний, геометро-топологічний. Для синтезу зразків заданого фазового складу проводилося послідовне подрібнення, змішування і випалення сировинних сумішей. Повнота перебігу синтезу сполук контролювалася методом рентгенофазового аналізу і методом хімічного аналізу за відсутності вільного оксиду кальцію. Дослідження мікроскопічного складу продуктів гідратації та отриманих матеріалів проводилися з використанням петрографічного методу аналізу (поляризаційний мікроскоп МІН – 8) та електронної мікроскопії (JSM-840 scanning microscope). Термогравіметричний метод аналізу сировинних матеріалів проводився на дериватографі Q – 1500 Д системи F. Paulik – J. Paulik – L. Erdey. Фізико-механічні випробування цементу проводилися відповідно до методики малих зразків М. І. Стрелкова, а оптимальні склади цементів випробовувались згідно діючих стандартів на відповідні матеріали. Температури і склади евтектики в бінарних перетинах системи розраховувалися за формулами Епстейна-Хоуленда, а в трьох- і чотирикомпонентному перетинах – шляхом розв'язування системи нелінійних рівнянь. Математична обробка даних для побудови діаграм "склад-властивість" з метою оптимізації складів цементів і фракційного складу заповнювача здійснювалася з використанням методу симплекс-решітчастого планування експерименту з використанням програмних пакетів Office Excel та Triangle 1.0. Фізико-механічні та технічні характеристики розроблених матеріалів визначалися відповідно до стандартних методик дослідження тугоплавких в'яжучих матеріалів. В третьому розділі наведені результати теоретичних та експериментальних досліджень субсолідусної будови потрійних систем CaO – CoO – MoO₃, CaO – Al₂O₃ – MoO₃, CоO – Al₂O₃ – MoO₃ та чотирикомпонентної системи CaO – CoO – Al₂O₃ – MoO₃ в області субсолідуса. Розраховані термодинамічні константи бінарних CoAl₂O₄, CoMoO₄ і трикомпонентної сполуки Ca₃CoAl₄O₁₀, які відсутні в довідковій літературі і сформовано базу термодинамічних даних, які необхідні для визначення ймовірності протікання твердофазних реакцій за участю сполук системи, а також перебігу оборотних обмінних взаємодій, які зумовлюють наявність певних конод в багатокомпонентній системі, що містить алюмінати і молібдати кальцію та кобальту. Проведено термодинамічні розрахунки ймовірності утворення потрійної сполуки Ca₃CoAl₄O₁₀ в системі СаO – CoO – Al₂O₃. Уточнено будову трикомпонентної системи СаО – CoO – Al₂O₃ в області субсолідуса за наявності і відсутності потрійної сполуки Ca₃CoAl₄O₁₀. Встановлено, що система при наявності потрійної сполуки розбивається на 9 елементарних трикутників. Проведено аналіз системи і виявлено, що оптимальним з точки зору отримання глиноземистих цементів є трикутник CaAl₂O₄ – CаAl₄O₇ – CоAl₂O₄, який містить фази, що мають значні ймовірності існування та високі температури плавлення. Вперше досліджено будову трикомпонентних систем CaO – CoO – MoO₃, CoO – Al₂O₃ – MoO₃, CаO – Al₂O₃ – MoO₃ та встановлено, що найбільшу термодинамічну стабільність мають молібденові сполуки CaMoO₄ і CoMoO₄, співіснування яких з вогнетривкою кобальтовою шпінеллю і гідравлічно активними алюмінатами кальцію дозволяє отримувати глиноземисті цементи на основі відходів хімічної промисловості. Визначено субсолідусну будову чотирикомпонентної системи CаO – CoO – Al₂O₃ – MoO₃, яка розбивається на 16 елементарних тетраедрів в субсолідусній області. Для вивчення взаємозв'язку елементарних тетраедрів побудований топологічний граф. Наведено геометро-топологічну характеристику системи та встановлено, що для отримання в'яжучого матеріалу високої міцності інтерес представлятиме елементарний тетраедр CaAl₂O₄ – СaAl₄O₇ – СoMoO₄ – СоAl₂O₄. Даний тетраедр містить гідравлічно активні фази глиноземистого цементу та вогнетривку кобальтову шпінель, що дозволяє розробляти на основі його композицій склади модифікованих глиноземистих цементів за ресурсоощадною технологією. Розраховано на основі апроксимації експериментальних даних температури плавлення і склади евтектик для бінарних, потрійних та чотирикомпонентного перетинів в системі CaO – CoO – Al₂O₃ – MoO₃. Встановлено, що найбільш оптимальним для отримання вогнетривких в'яжучих матеріалів є склад потрійного перерізу СaAl₂O₄ – CoAl₂O₄ – CaAl₄O₇ (з температурою плавлення евтектики 1497 °С), оскільки до його складу входять сполуки з високими температурами плавлення і в’яжучими властивостями. Бінарні перерізи СaAl₂O₄ – CoAl₂O₄ та СaAl₄O₇ – CoAl₂O₄, які входять в зазначений потрійний переріз, також мають високі температури евтектики (1544°С та 1676 °С відповідно). Чотирикомпонентна евтектика в перерізі CaAl₂O₄ – СaAl₄O₇ – СoMoO₄ – СoAl₂O₄ зміщена до ребра CaAl₂O₄ – СoMoO₄ і становить 1147 °С. Найбільшу температуру має евтектика, розташована на ребрі СaAl₄O₇ – СoAl₂O₄ (1676 °С). Таким чином, для отримання тугоплавкого неформованого матеріалу на основі кальцієвого кобальталюмінатного цементу, необхідно коригувати фазовий склад цементу в сторону більшого вмісту СoAl₂O₄. При цьому при незмінній кількості CaAl₂O₄ та СaAl₄O₇ необхідно зменшувати вміст фази СoMoO₄ для підвищення загальної температури появи розплаву. В четвертому розділі представлені результати розробки технології глиноземистих цементів на основі композицій чотирикомпонентної системи CaO – CoO – Al₂O₃ – MoO₃ з використанням відходів хімічної промисловості. За допомогою комплексу фізико-хімічних методів аналізу проведено дослідження відпрацьованих носіїв каталізаторів та відходів водоочищення ПрАТ "Сєвєродонецьке об’єднання Азот" та встановлено, що вони можуть використовуватися для синтезу експериментального глиноземистого цементу як вихідні алюмінійвмісні компоненти за рахунок вмісту Al₂O₃ до 87 мас. % у складі відпрацьованих носіїв каталізаторів. Синтезовано ряд складів глиноземистих цементів, склади яких оптимізовані за допомогою симплекс-ґратчастого методу планування експерименту. За результатами розрахунків обрано оптимальну область складів кальцієвих кобальтвмісних цементів з вмістом, мас. %: CaAl₂O₄ – 25 – 55, CaAl₄O₇ – 15 – 35; CoAl₂O₄ – 25 – 45. За результатами фізико-механічних випробувань розроблених глиноземних цементів встановлено, що вони відносяться гідравлічних в'яжучих матеріалів з водоцементним відношенням 0,20 – 0,23; є швидкотверднучими (міцність при стиску у віці 1 доби твердіння складає 18 – 46 МПа), високоміцними (міцність при стиску у віці 28 діб твердіння становить 29,0 – 63,0 МПа) гідравлічними матеріалами з температурою плавлення понад 1600 °С. За результатами проведених досліджень оптимальним вибрано склад, який містить CaAl₂O₄ – 30 мас. %, CaAl₄O₇ – 20 мас. %; CoAl₂O₄ – 50 мас. %. Дослідження фізико-механічних властивостей цементу обраного складу проводилися відповідно до державних стандартів. Основні фізико – механічні властивості розробленого цементу: рівномірність зміни об'єму – рівномірне; тонкість помелу – повний прохід крізь сито № 006; нормальна густина – 0,2; терміни тужавіння: початок – 1 год 10 хв; кінець – 5 год 40 хв; границя міцності при стиску у віці 28 діб – 63 МПа. Основною технічною властивістю розроблених складів цементів є вогнетривкість, яка складає 1630 °С. Досліджені процеси фазоутворення у сировинних сумішах. Встановлено, що у сировинних сумішах, взаємодія оксиду кальцію (із шламу водоочистки) з оксидами алюмінію та кобальту (із відходу каталізатора) з помітною швидкістю починає протікати вже при 900 °С та повністю закінчується при температурах 1300 – 1350 °С з формуванням заданого фазового складу. Для всіх значень температур залежність є близькою до лінійної та не виходить з початку координат, це свідчить про те, що у початковий період протікання процесу швидкість лімітується хімічною взаємодією компонентів сировинної суміші на межі розділу фаз і тільки після утворення безперервного шару продуктів твердофазних реакцій швидкість процесу визначається дифузією компонентів у реакційну зону. Проведеними рентгенофазовими дослідженнями клінкерів, випалених при різних температурах та часі витримки доведено, що у результаті взаємодії вихідних сировинних компонентів суміші у матеріалі синтезується суміш гідравлічно активних моно- та діалюмінату кальцію та вогнетривкої кобальтової шпінелі, що забезпечує одержуваним в’яжучим матеріалам комплекс заданих експлуатаційних характеристик: високу міцність, прискорені терміни тверднення, вогнетривкість. Відсутність фаз, які відповідають сполукам молібдену пояснюється тим, що вони входять до складу гідравлічно активних алюмінатів як обмежені тверді розчини, деформуючи кристалічну гратку та підвищуючи гідравлічну активність. Проведені дослідження продуктів гідратації розробленого глиноземистого цементу. З результатів рентгенографічного аналізу встановлено, що основними кристалічними фазами глиноземистого цементу є гідроалюмінати кальцію складу C₂AH₈, гідроксид алюмінію, гідрокарбоалюмінат, а також негідратовані сполуки алюмінату кальцію CaAl₄O₇ і кобальту СоAl₂O₄, що буде забезпечувати подальшу рекристалізацією і зміцнення структури цементного каменю. Мікроскопічними дослідженнями структури сколу гідратованого глиноземистого цементу встановлено, що вона представлена, в основному, рівномірно розташованими голчастими безбарвними та сірувато-коричневими кристалами з гексагональними обрисами та слабким подвійним світлозаломленням, які ідентифікуються як гідроалюмінати кальцію складу C₂AH₈ (до 35 об. %). Наявні крупні негідратовані кристали синього кольору кобальтової шпінелі. Зі збільшенням терміну гідратації загальний поровий простір цементного каменю зменшується, що свідчить про ущільнення структури та збільшення загальної міцності матеріалу. Таким чином, встановлено, що висока міцність цементу обумовлена наявністю в ньому гідроалюмінатів кальцію типу C₂AH₈, гідроксиду алюмінію, а також непрогідратованих зерен алюмінатів кальцію, що сприятиме подальшому тривалому набору міцності. Саме таке співіснування фаз як в кристалічному, так і в колоїдному стані забезпечують високу міцність цементного каменю. Проведено порівняння розробленого цементу з традиційними промисловими цементами марки "Gorkal" виробництва Польщі. Отримані результати свідчать про те, що розроблений цемент є швидкотужавіючим, швидкотверднучим з високою міцність та вогнетривкістю, що свідчить про його конкурентоспроможність на ринку в'яжучих матеріалів. В п'ятому розділі представлені результати одержання та експериментального дослідження вогнетривких бетонів на основі розробленого глиноземистого цементу. Для отримання високоміцного вогнетривкого бетону з покращеними експлуатаційними характеристиками проведено підбір раціонального гранулометричного складу заповнювача з урахуванням міцності, щільності та однорідності. Як в’яжучу речовину використано глиноземистий цемент оптимального складу, як заповнювач – високоглиноземистий шамот. За результатами виконаних розрахунків та математичної обробки експериментів отримані рівняння регресії та побудовані симплекс-діаграми "склад – міцність" та "склад – уявна щільність". Встановлено, що для отримання бетону підвищеної міцності, щільності та однорідності необхідне наступне співвідношення фракцій заповнювача мас. % (відношення цемент : заповнювач дорівнює 1 : 3): (1,25 – 0,63)∙10⁻³ м – 10 – 35; (0,63 – 0,315)∙10⁻³ м – 15 – 45; (0,315 – 0,15)∙10⁻³ м – 30 – 65. За результатами досліджень встановлено, що на основі розробленого глиноземистого цементу можна отримувати бетони на основі різних наповнювачів з високою міцністю виробництва ПАТ "Дружківський вогнетривкий завод". Розроблені склади бетонів у віці 28 діб характеризуються наступними показниками: міцність при стиску 52 – 65 МПа; вогнетривкість – 1500 – 1700 °С; температура початку деформації під навантаженням – 1370 °С; термостійкість – понад 20 циклів; ступінь розміцнення в температурному інтервалі 20 – 1300 °С – до 13,6 %. Вогнетривкі бетони, що містять як заповнювач високоглиноземний шамот, мають найбільшу міцність. В результаті проведених досліджень встановлено, що на основі глиноземистого цементу, отриманого з шламу водоочищення і відбракованого каталізатору ГПС–4Ш ПрАТ "Сєвєродонецьке об'єднання Азот" можна отримувати бетони на основі різних наповнювачів з високими характеристиками міцності, зниженою уявною поруватістю та підвищеними термомеханічними властивостями, що дозволить використовувати їх для виготовлення як монолітних футеровок складних конфігурацій, так і штучних вогнетривких виробів високотемпературних агрегатів різноманітних галузей промисловості. Промислові випробування розроблених бетонів проведені у ТОВ "Сервісний центр "Вогнетривсервіс". Встановлено, що за експлуатаційними показниками бетонні зразки можно рекомендувати для створення складних монолітних футеровок з температурою експлуатації до 1600 °С. Наукові результати впроваджені в навчальний процес кафедри технології кераміки, вогнетривів, скла та емалей Національного технічного університету "Харківський політехнічний інститут".Документ Цементвмісні композиції з модифікуючими добавками для неформованих мас(Національний технічний університет "Харківський політехнічний інститут", 2018) Шумейко, Віта МиколаївнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертаційна робота присвячена вирішенню науково-практичної задачі по розробці рецептурно-технологічних параметрів отримання неформованих мас цементвмісних композицій з використанням фізико-хімічних особливостей модифікуючих добавок, які сприяють формуванню щільної і міцної структури цементного каменю і забезпечують покращення експлуатаційних властивостей. За удосконаленою методикою синтезовано полікарбоксилатні добавки, знижуючи їх собівартість по відношенню до відомих суперпластифікаторів і встановлено перспективність їх використання в цементвмісних композиціях для отримання матеріалів з підвищеними фізико-механічними властивостями. Досліджено кремнеземвмісні відходи, які утворюються при виробництві фосфоровмісних добрив, та показано еколого-економічну доцільність і можливість часткової заміни різних видів цементів. Термодинамічними розрахунками спрогнозовано можливість утворення нітридів заліза при отриманні портландцементного клінкеру, які можуть бути джерелами шкідливих для життєдіяльності людей виділень аміаку з будівельних матеріалів і конструкцій, виготовлених із застосуванням портландцементу. Розроблено та оптимізовано комплексну добавку на основі сумішей електролітів, яка передбачає зниження відповідних ризиків та отримання матеріалів з підвищеними експлуатаційними властивостями і екологічністю. В результаті проведених випробувань встановлено, що цементвмісні композиції з розробленими і всебічно дослідженими модифікуючими добавками є перспективними для застосування їх в різних галузях промисловості, які були апробовані з позитивним результатом, а результати досліджень впроваджені у практику навчального процесу.Документ Цементвмісні композиції з модифікуючими добавками для неформованих мас(Національний технічний університет "Харківський політехнічний інститут", 2018) Шумейко, Віта МиколаївнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертаційна робота присвячена вирішенню науково-практичної задачі по розробці рецептурно-технологічних параметрів отримання неформованих мас цементвмісних композицій з використанням фізико-хімічних особливостей модифікуючих добавок, які сприяють формуванню щільної і міцної структури цементного каменю і забезпечують покращення експлуатаційних властивостей. За удосконаленою методикою синтезовано полікарбоксилатні добавки, знижуючи їх собівартість по відношенню до відомих суперпластифікаторів і встановлено перспективність їх використання в цементвмісних композиціях для отримання матеріалів з підвищеними фізико-механічними властивостями. Досліджено кремнеземвмісні відходи, які утворюються при виробництві фосфоровмісних добрив, та показано еколого-економічну доцільність і можливість часткової заміни різних видів цементів. Термодинамічними розрахунками спрогнозовано можливість утворення нітридів заліза при отриманні портландцементного клінкеру, які можуть бути джерелами шкідливих для життєдіяльності людей виділень аміаку з будівельних матеріалів і конструкцій, виготовлених із застосуванням портландцементу. Розроблено та оптимізовано комплексну добавку на основі сумішей електролітів, яка передбачає зниження відповідних ризиків та отримання матеріалів з підвищеними експлуатаційними властивостями і екологічністю. В результаті проведених випробувань встановлено, що цементвмісні композиції з розробленими і всебічно дослідженими модифікуючими добавками є перспективними для застосування їх в різних галузях промисловості, які були апробовані з позитивним результатом, а результати досліджень впроваджені у практику навчального процесу.Документ Определение уровня гидратации пациентов, получающих лечение методом программного гемодиализа(НТУ "ХПИ", 2017) Ткачук, Богдан ВладимировичДиссертация на соискание ученой степени кандидата технических наук по специальности 05.11.17 – биологические и медицинские приборы и системы. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2017. Диссертационная работа посвящена решению одной из актуальных научно-технических задач современного гемодиализа – контроля состояния гидратации пациента и разработке метода для своевременной остановки процедуры ультрафильтрации при достижении пациентом "сухого веса". В работе проведено анализ современных биофизических представлений про распределение и перемещение жидкостей в организме пациента, что позволило выявить высокий уровень сложности и многофакторности гидравлических процессов и установить необходимость создания математических моделей перемещения жидкостей и критерия остановки процедуры при достижении пациентом "сухого веса". Впервые получена математическая модель перемещения жидкости в организме пациента при ультрафильтрации, на основании теории неравновесной термодинамики, что позволило выявить взаимную функциональную зависимость наполнения жидкостных секторов при процедуре программного гемодиализа. Усовершенствована электрофизическая модель процессов в организме пациента при ультрафильтрации для метода биоимпедансометрии, за счет разделения жидкостных секторов, что позволило использовать его для определения состояния гидратации пациента при процедуре программного гемодиализа. По результатам теоретических исследований выбран параметр гематокрита, который характеризует состояние наполнения сосудистого русла, что дало возможность разделить объем внеклеточной жидкости на составляющие. Разработан метод определения "сухого веса", критерием в котором является распределение объема внеклеточной жидкости на две составляющие интерстициальную жидкость и плазму крови и сравнении значений объемов удаленного ультрафильтрата в этих составляющих во время гемодиализа. Разработанный на основе результатов моделирования метод определения "сухого веса" пациентов, позволил повысить достоверность определения момента достижения уровня нормогидратации пациентов при программном гемодиализе на (11-16) %. Разработана структурная схема системы для определения "сухого веса", которая позволяет объединить воедино серийно выпускаемые аппарат "искусственная почка", прибор биоимпедансометр и ПК, что дает возможность реализовать алгоритмические решения и обеспечить работу системы, без разработки дополнительных аппаратных средств. На основе клинических исследований и испытаний разработаны основные медико-технические требования для выбора или проектирования приборов биоимпедансометров, а также созданы практические рекомендации для применения метода определения "сухого веса" пациентов в гемодиализных клиниках. Сопоставление результатов проведенных клинических исследований с данными полученными с помощью традиционных методик, при ультрафильтрации, подтвердили эффективность разработанных моделей и метода для определения "сухого веса" пациента при программном гемодиализе. Основные результаты работы нашли внедрение в лечебный процесс отделения амбулаторного хронического гемодиализа №10, Харьковского областного клинического центра урологии и нефрологии им. В.И. Шаповала; в учебный процесс на кафедре промышленной и биомедицинской электроники НТУ "ХПИ"; при разработке нового варианта измерителя биоимпеданса человека в НТУ Украины "КПИ им. Игоря Сикорского".Документ Визначення рівня гідратації пацієнтів, які отримують лікування методом програмного гемодіалізу(НТУ "ХПІ", 2017) Ткачук, Богдан ВолодимировичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.17 – біологічні та медичні прилади і системи. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. Дисертаційну роботу присвячено вирішенню однієї з актуальних науково-технічних задач сучасного гемодіалізу – контролю стану гідратації пацієнта та розробці методу для своєчасної зупинки процедури ультрафільтрації при досягненні пацієнтом "сухої ваги". Розроблено метод визначення "сухої ваги", критерієм у якому є розподіл об’єму позаклітинної рідини на дві складові інтерстиціальну рідину і плазму крові та порівнянні значень об'ємів видаленого ультрафільтрату у цих складових під час гемодіалізу. Вперше отримано математичну модель переміщення рідини в організмі пацієнта та удосконалено електрофізичну модель процесів в організмі пацієнта при ультрафільтрації для методу біоімпедансометрії. Вперше розроблено на основі результатів моделювання метод визначення "сухої ваги" пацієнтів, що дозволило підвищити достовірність визначення моменту досягнення стану нормогідратоції при програмному гемодіалізі на (11-16) %. Також створено практичні рекомендації для застосування даного методу у гемодіалізних клініках.Документ Теоретические основы технологии тугоплавких неформованных материалов на основе композиций системы (Mg, Ca, Sr, Ba)O – Al₂O₃ – Cr₂O₃(НТУ "ХПИ", 2015) Корогодская, Алла Николаевнациальности 05.17.11 – технология тугоплавких неметаллических материалов. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2015 г. Диссертационная работа посвящена решению научно-практической проблемы создания теоретических основ технологии тугоплавких неформованных материалов с высокой прочностью, огнеупорностью и стойкостью к воздействию агрессивных сред на основе алюминатов и хромитов щелочноземельных элементов за счет целенаправленного формирования фазового состава и структуры клинкера, цементного камня и бетона. Систематизирована база термодинамических данных соединений, входящих в состав многокомпонентной системы (Mg, Ca, Sr, Ba)O – Al₂O₃ – Cr₂O₃, на основе установленных фазовых равновесий исследовано субсолидусное строение ее трех- и четырехкомпонентных подсистем и установлено их подобие, заключающееся в сосуществовании алюминатов с хромитом щелочноземельного элемента и с периклазом, что обусловливает устойчивые технологические параметры твердофазного синтеза высокопрочных, огнеупорных алюмохромитных вяжущих материалов и бетонов на их основе. На основании данных регрессионного анализа и результатов физико-механических испытаний оптимизированы составы алюмохромитных цементов и установлено соответствие их характеристик требованиям нормативной документации: нормальная густота цементного теста 23 – 29 %; сроки схватывания: начало – от 40 мин до 2 час, конец – от 55 мин до 4 час 15 мин; предел прочности при сжатии в возрасте 28 суток твердения 57 – 75 МПа; предел прочности при изгибе в возрасте 28 суток твердения 6,2 – 6,8 МПа, огнеупорность – 1700 – 1900 °С. Исследованы особенности протекания процессов фазообразования клинкеров алюмохромитных цементов и установлено, что в начальный период протекания процесса фазообразования скорость реакций лимитируется химическим взаимодействием компонентов сырьевой смеси на границе раздела фаз и только после образования непрерывного слоя продуктов твердофазных реакций скорость процесса определяется диффузией компонентов в реакционную зону. Последовательность образования фаз (монохромит – моноалюминат – трехосновный хромит – трехосновный алюминат) подтверждена рентгенофазовыми исследованиями, термодинамическими расчетами и расчетами энергии кристаллической решетки, что обусловливает формирование дефектной структуры алюмохромитных клинкеров. Исследованы клинкеры алюмохромитных цементов и установлено, что их расчетный фазовый состав соответствует экспериментально полученным составам. Наличие в клинкерах ограниченных твердых растворов дефектной структуры обусловливает повышенную механическую прочность за счет возрастания свободной энергии кристаллической решетки.Документ Теоретичні основи технології тугоплавких неформованих матеріалів на основі композицій системи (Mg, Ca, Sr, Ba)O – Al₂O₃ – Cr₂O₃(НТУ "ХПІ", 2015) Корогодська, Алла МиколаївнаДисертація на здобуття наукового ступеня доктора технічних наук зі спеціальності 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. Дисертацію присвячено створенню теоретичних основ технології тугоплавких неформованих матеріалів з високою міцністю, вогнетривкістю та стійкістю до дії агресивних середовищ на основі алюмінатів і хромітів лужноземельних елементів за рахунок цілеспрямованого формування фазового складу та структури клінкеру, цементного каменю і бетону. Систематизовано базу термодинамічних даних; на основі встановлених фазових рівноваг уточнено та досліджено субсолідусну будову потрійних та чотирикомпонентних підсистем багатокомпонентної системи (Mg, Ca, Sr, Ba)O – Al₂O₃ – Cr₂O₃ та встановлено їх подібність, яка полягає у співіснуванні алюмінатів з хромітом лужноземельного елементу та з периклазом, що обумовлює стабільні технологічні параметри твердофазного синтезу вогнетривких алюмохромітних в'яжучих матеріалів та бетонів на основі їх композицій. Встановлено особливості протікання процесів фазоутворення та гідратації алюмохромітних цементів, визначено механізми структуроутворення клінкерів та цементного каменю. Розроблено склади високоміцних, вогнетривких алюмохромітних цементів та бетонів на їх основі, визначено їх основні фізико-механічні та технічні властивості. Розроблено ресурсо- та енергозберігаючу технологію отримання алюмохромітних цементів з використанням відходів хімічної галузі промисловості. Неформовані матеріали, розроблені з використанням алюмохромітних цементів було апробовано в промислових та напівпромислових умовах з позитивним результатом, а результати досліджень впроваджені у практику навчального процесу.