Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Особливості отримання бензинової фракції термічним піролізом поліолефінової сировини
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Шевченко, Кирило Володимирович; Григоров, Андрій Борисович
    В статті розглянуто особливості проведення процесу термічного піролізу вторинної полімерної сировини, спрямованого на отримання бензинової фракції – бази для отримання сумішевого або синтетичного автомобільного бензину. Спираючись на світовий досвід переробки полімерів, для дослідження було обрано поліолефіни, представлені поліетиленом високої густини (HDLP) та поліпропілен (РР). Термічний піроліз проводили при атмосферному тиску (0,10-0,12 МПа) на лабораторній установці реакторного типу з подальшим видаленням бензинової фракції (30-210 °С) із рідких продуктів піролізу за методом ASTM D 86. Встановлено, що температурний інтервал, в якому необхідно проводити піроліз поліолефінової сировини, складає для HDLP – 400-430°С (максимальний вихід бензинової фракції при 420°С); для РР - 350-370 °С (максимальний вихід бензинової фракції при 365 °С). Керуючи тривалість термічного піролізу можна збільшити вихід бензинової фракції у середньому на 15-17 %, що необхідно враховувати при промисловому впровадженні та подальшій експлуатації установок піролізу полімерної сировини. Збільшення температури кінця кипіння бензинової фракції з 150 °С до 210 °С дозволяє збільшити її вихід на 9 % (для HDLP) і на 12 % (для РР). Але відповідно спостерігається і збільшення вмісту у ній олефінів (на 13-14 %), що є позитивним моментом з точки зору стійкості до детонації бензинової фракції і негативним – з огляду на низьку її хімічну стабільність. Проведені дослідження показали, що вторинну поліолефінову сировину необхідно розглядати як альтернативну до класичної сировини (нафти та газового конденсату), а процес піролізу як основний технологічний процес отримання бензинової фракції – бази для отримання товарного автомобільного бензину. Перспективними місцями реалізації даної технології є як виробничі майданчики нафтопереробних заводів, так і майданчики, розташовані у безпосередньої близькості до місць накопичення сировини – портів, міських сміттєзвалищ, спеціальних полігонів.
  • Ескіз
    Документ
    Дослідження антикорозійних властивостей дизельної фракції, що містить 1,3-дифенилтриазен
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Троценко, Олександр Володимирович; Григоров, Андрій Борисович
    В статті розглянуто можливість розширення номенклатури хімічних речовин, які проявляють свої високі антикорозійні властивості в вуглеводневому середовищі і можуть використовуватися у якості присадок до моторних палив, за рахунок використання 1,3-дифенилтриазену. Дана речовина відноситься до класу діазосполук а її антикорозійні властивості визначаються адсорбційною здатністю при контакті з металевою поверхнею, що зумовлена наявністю в молекулі азотовмісних активних груп, які утворюють з металевою поверхнею донорно-акцепторний (координаційний) зв’язок. Дослідження антикорозійних властивостей проводилися на металевих пластинах (мідь та сталь, марки 3), що розташовувалися в модельному середовище, яке складалося з прямогонної дизельної фракції (240-350 °С), отриманої з газового конденсату з додаванням 1 % мас. 1,3-дифенилтриазену в яку вводили 0,1 % мас. розчину 97% оцтової кислоти або 0,5 % мас. водного розчину 10% NaCl. Антикорозійні властивості означеного модельного середовища досліджувалися як в статичних (м’яких) умовах при 20 °С, періодичному перемішуванні зі швидкістю 100 об./хв. в продовж 90 діб, так і в динамічних (жорстких) умовах при 50 °С, безперервному перемішуванні зі швидкістю 500 об./хв., аерації 1,5 дм³ /хв. в продовж 120 годин. Встановлено, що в тих пробах де знаходився 1 % мас. 1,3-дифенилтриазен на поверхні металевих пластин утворюваласязахисна плівка, про що свідчить і зміна кольору металевої пластини, і відсутність на поверхні ознак корозії, а також незначний приріст її маси (в межах 0,0002÷0,0003 г). В пробах де був відсутній 1,3-дифенилтриазен швидкість корозії (Кₘ), для м’яких умов дослідження складала 0,94×10⁻⁴÷5,16×10⁻⁴ г/(м²×год), для жорстких умов дослідження – 0,56×10⁻² ÷1,07×10⁻² г/(м²×год). Запропонований авторами підхід, що враховує комплексну дії декількох факторів (температуру, перемішування, аерацію та наявність у середовище корозійно-агресивного агенту), дозволяє адекватно, наближено до умов, які можуть виникати при реальній експлуатації об’єктів, оцінити ефективність застосування тієї, чи іншої хімічної речовини для захисту від корозії металевих поверхонь.
  • Ескіз
    Документ
    Діелектрометричний контроль ступеня підготовленності нафтової сировини
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Набіль, Абдель Сатер; Григоров, Андрій Борисович
    В статті розглянуто можливість змінення сукупності показників якості, які сьогодні використовують для визначення ступеня підготовленості нафтової сировини (нафти або газового конденсату на інтегральний показник відносної діелектричної проникності (ε), що характеризує електричні властивості нафтової сировини та продуктів її переробки. Використання цього показника дозволить здійснювати оперативний контроль за роботою установок підготовки нафтової сировини, які мають ключове значення в ланцюзі технологічних операцій, спрямованих на отримання товарних нафтопродуктів.Експериментально встановлено, що на збільшення величини показника (ε) істотно впливає наявність в нафтовій сировині пластової води, з розчиненими в ній хлористими солями та напівпровідні механічні домішки, що представлені часточками Fe₂O₃ –продуктами корозії технологічного обладнання. І навпаки, наявність в нафтовій сировині діелектричних механічних домішок породи (SiO₂) сприяє зниженню величини показника (ε). А це, у свою чергу, необхідно враховувати під час встановлення сумарного впливу забруднюючих домішок на показник (ε)нафтової сировини. Реалізація запропонованого підходу спирається на використання двохсекційних ємнісних датчиків, які монтуються на трубопроводі з основним матеріальним потоком установки – знесоленою та зневодненою нафтовою сировиною, за допомогою відвідних патрубків та муфтових з’єднань. На підставі проведених лабораторних досліджень з використанням модельних середовищ, було отримано рівняння множинної лінійної регресії, за якими, в залежності від вмісту мінералізованої води та механічних домішок (напівпровідникової та діелектричної природи) в нафті або газовому конденсаті, розраховується величина показника (ε) з середньою похибкою А на рівні 1,39 % і 2,06 %, відповідно.
  • Ескіз
    Документ
    Займистість вуглеводневих фракцій, отриманих деструкцією полімерної сировини
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Шевченко, Кирило Володимирович; Григоров, Андрій Борисович
    В статті розглянуто можливість використання вуглеводневих фракцій – продуктів термічної деструкції полімерної сировини (поліетиленової та поліпропіленової) при атмосферному тиску у якості компонентів товарних дизельних палив. Такий підхід дозволить, з одного боку поліпшити властивості товарного дизельного палива, з іншого – підвищити конкурентоспроможність продукції вітчизняного виробництва. Крім цього, також частково вирішується проблема, що пов‘язана з накопиченням полімерних відходів і їх негативним впливом на навколишнє середовище. Встановлено характер залежностей між такими показниками якості досліджуваних фракцій 160–350 °С, 200–350 °С, 240–350 °С як температура самозаймання, температура початку кипіння фракції та цетанове число – показник, що характеризує займистість. Залежність температури самозаймання від температури початку кипіння фракцій має поліномінальний характер та свідчить про зменшення температури самозаймання при збільшенні температури початку кипіння фракцій. Залежність цетанового числа від температури початку кипіння фракцій має лінійний характер та свідчить про збільшення цетанового числа при збільшенні температури початку кипіння фракцій. Залежність цетанового числа від температури самозаймання фракцій має поліномінальний характер та свідчить про зменшення цетанового числа при збільшенні температури самозаймання фракцій. Встановлено, що температура самозаймання досліджуваних фракцій не залежно від типу полімерної сировини, коливається у досить вузькому діапазоні, від 229 до 348 °С, а цетанове число – від 41 до 55 од. Спираючись на літературні данні, саме цей діапазон є близьким до діапазону, який мають товарні дизельні палива, а власне досліджені нами фракції можна використовувати при виробництві дизельного палива.
  • Ескіз
    Документ
    Дослідження корозійного впливу на метал широкої паливної фракції, отриманої з вторинної полімерної сировини
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Григоров, Андрій Борисович; Шевченко, Кирило Володимирович; Сінкевич, Ірина Валеріївна
    Наведено дослідження корозійного впливу на метал (мідну пластину) широкої паливної фракції (ШПФ) - рідкого продукту термічної деструкції вторинної сировини, виготовленої з поліетилену низького тиску (ПЄНТ) при температурах до 380°С та тиску 0,12-0,15 МПа. Визначення корозійного впливу на мідну пластину ШПФ здійснювалося у відповідності до стандарту ASTM D 130-10 при температурі 50°С впродовж 120 хвилин як для зневодненої проби ШПФ, так і у присутності 1% води. Встановлено, що мідні пластини, які перебували у ШПФ та ШПФ + 1% води при візуальній оцінці мали світло-оранжевий колір, близький до кольору вихідної пластини. Це, у свою чергу, свідчить про те, що досліджувані проби ШПФ витримали випробування, а корозійний вплив на мідну пластину можна віднести до легкого потьмяніння, клас 1.а. Також, разом з дослідженням у стандартних умовах визначався корозійний вплив на мідну пластину продуктів згоряння ШПФ при різних температурах при яких було встановлено, що в інтервалі температур 180-230°С поверхня мідної пластини набуває блідно-ліловий колір, а корозійний вплив на мідну пластину можна віднести до помірного потьмяніння, клас 2.b; при температурах 230-290° поверхня мідної пластини вже має сріблястий колір, а корозійний вплив на мідну пластину відповідає помірному потьмянінню, клас 2.d. Отже, при впливі продуктів згоряння ШПФ на мідну пластину відбувається лише киснева корозія, що зумовлена присутністю кисню у зоні розташування мідної пластини та температурою продуктів згоряння. Таким чином, було зроблено висновок про відсутність корозійно-активних елементів у ШПФ, що робить її придатною для застосування як дешевого компонента моторних, пічних та котельних палив, поліпшуючого їх експлуатаційні властивості (наприклад, зниження вмісту сірки).
  • Ескіз
    Документ
    Захисні властивості нафтопродуктів, отриманних з вторинної сировини
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Григоров, Андрій Борисович; Мардупенко, Олексій Олександрович; Сінкевич, Ірина Валеріївна; Шевченко, Кирило Володимирович
    Проведено дослідження захисних властивостей нафтопродуктів, отриманих з використанням вторинної сировини, зокрема пластичних мастил та полімервмісних бітумів, які планується використовувати у якості аналогів до нафтопродуктів, отриманих з кластичної нафтової сировини. Технологія отримання пластичних мастил, полягала у проведенні термічної деструкції полімерних відходів поліетиленів, поліпропілену та полістиролу у лабораторних умовах при атмосферному тиску в реакторі періодичної дії, з подальшим видаленням з отриманих продуктів висококиплячих фракцій (початок кипіння >320 °C). Одержані висококиплячі фракції, за своїми властивостями, відповідали пластичним мастилам. В свою чергу бітуми, було отримано шляхом компаундування висококиплячих нафтових залишків, зокрема нафтового шламу з 10 % мас. полімерними добавками поліпропілену та пінополістиролу. Для цих продуктів, досліджувалася стійкість до впливу як атмосферної корозії, що виникає при експлуатації або зберіганні матеріалів з металевими поверхнями на відкритих майданчиках при дії навколишнього середовища, так і електрохімічної корозії, яка виникає при розташуванні технологічного обладнання та комунікацій у ґрунті особливо в присутності вологи. У ході проведених досліджень було з’ясовано, що як пластичні мастила, так і досліджувані бітуми, з усіма типами полімерів, мають високі захисні властивості. Вони запобігають утворенню на металевих пластинах, виготовлених зі сталі, марки Ст3, що знаходились у водних розчинах 10 % NaCl і 3 % Na₂SO₃ осередків корозії, що імітує вплив атмосферної корозії. А поляризаційні залежності, отримані потенциостатичним способом – характеризуються, у розглянутому діапазоні значень, відсутністю змінення щільності струму при постійному значенні потенціалу (2,5 V), що свідчить про відсутність електрохімічної корозії.