Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Анализ и совершенствование компонент вычислительных моделей и систем, основанных на иммунной парадигме
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Дмитриенко, Валерий Дмитриевич; Леонов, Сергей Юрьевич
    Одним из основных компонент иммунных систем является компонент, оценивающий степень взаимосвязи между входными данными системы (антигенами) и детекторами их распознающими (антителами). Этот компонент базируется на основных четырех пространственных формах: евклидовой, хемминговой, целочисленной и символьной. В данной статье предлагается использовать для сопоставления элементов искусственной иммунной системы (ИИС) гибридные нейронные сети, являющиеся развитием нейронной сети Хемминга. На входы этих сетей могут подаваться как однотипные компоненты (двоичные, целочисленные (алфавит которых содержит более двух символов), вещественные, символьные), так и различные комбинации таких компонент.
  • Ескіз
    Документ
    Нейронная сеть, использующая скалярное произведение и определяющая несколько решений
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Дмитриенко, Валерий Дмитриевич; Леонов, Сергей Юрьевич
    Нейронная сеть Хемминга является весьма эффективным инструментом для решения задач распознавания дискретных объектов, двоичные компоненты которых описываются с помощью биполярных компонент, а в качестве меры близости используется разность между числом одинаковых биполярных компонент векторов и расстоянием Хемминга между ними. Для более тонкой классификации двоичных объектов (векторов) применяется ряд расширений расстояния Хемминга, использующих различные функции аффинности (близости или взаимосвязи) между двоичными объектами. В статье предлагаются модификации нейронной сети Хемминга, в которых вместо расстояния Хемминга предлагаются другие функции аффинности между двоичными векторами.
  • Ескіз
    Документ
    Программная компонента для поиска решений системы уравнений в частных производных в ГТУ методом группового учета аргументов
    (Национальный технический университет "Харьковский политехнический институт", 2019) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Леонов, Сергей Юрьевич; Главчев, Дмитрий Максимович
    В геометрической теории управления (ГТУ) модели объектов управления, описываемые системами нелинейных обыкновенных дифференциальных уравнений, преобразовываются в эквивалентные линейные модели в форме Бруновского. Затем с помощью линейных моделей определяют оптимальные законы управления линейными объектами, а потом с помощью специальных преобразований переносят эти законы управления на модели исходных нелинейных объектов. Для определения функций преобразования (ФП), связывающих переменные линейных и нелинейных моделей необходимо решать системы дифференциальных уравнений в частных производных. Поскольку универсальных методов решения таких систем уравнений нет, то предложен метод поиска ФП на основе многорядного алгоритма МГУА. Проверка предложенного метода при решении ряда задач с помощью ГТУ подтвердила его работоспособность.
  • Ескіз
    Документ
    Основные структуры данных на базе ассоциативных нейронных сетей
    (НТУ "ХПІ", 2018) Дмитриенко, Валерий Дмитриевич; Леонов, Сергей Юрьевич; Бречко, Вероника Александровна
    Без основных структур данных: списков, магазинов, очередей, деревьев и т. д., невозможна разработка эффективных алгоритмов. Однако при моделировании ряда технологических процессов (например, при лезвийной обработке металлов) обычные структуры данных недостаточно соответствуют этим процессам и поэтому становятся неэффективными. В связи с этим предлагается новая структура данных на основе ассоциативных нейронных сетей, позволяющая более эффективно моделировать технологические процессы лезвийной обработки металлов.