Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Physical and geometrical nonlinear forced oscillations of beams
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Breslavsky, Dmytro Vasylovych; Palamarchuk, Pavlo Igorovych
    The paper presents a calculation method and the results of modeling the nonlinear forced planar oscillations of a beam. The calculation approach is based on the method of weighted residuals in the Galerkin form in combination with numerical methods of integration over time. A sequential analysis of elastic linear and geometrically nonlinear oscillations is performed and the case of irreversible deformation due to the occurrence of physically nonlinear creep strains is considered. To describe it, the Norton power law is used. Cases of hinge supported and a cantilever beam are considered. When solving the problem of a hinge supported beam, the sine system was used as the basis functions, and the Krylov functions were used for the cantilever beam’s problem. The results of numerical modeling are presented in the form of the dependence of the beam deflections on time and on the coordinate at a given point in time. The influence of geometric nonlinearity is demonstrated. The increase in deflection with time due to an increase in creep strains is analyzed.