Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Модель на основі шаблонів для короткострокового прогнозування кількості транзакцій у роздрібних магазинах одягу
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Галуза, Олексій Анатолійович; Костюк, Ольга Василівна; Нікульченко, Артем Олександрович; Ахієзер, Олена Борисівна; Асландуков, Микола Олексійович
    Отримання прогнозних значень показників з урахуванням історичних даних, що представлені часовими рядами, відіграє вирішальну роль у прийнятті бізнес-рішень у різних галузях. Однією з таких сфер застосування є задача передбачення кількості транзакцій у fashion-магазинах роздрібної мережі з метою оптимального планування робочого часу працівників та досягнення максимального задоволення покупців якістю обслуговування. Вибір відповідної моделі прогнозування часових рядів залежить від горизонту прогнозу, а також характеристик часового ряду, а саме тренду, сезонності, циклічності та нерегулярності. Традиційні методи аналізу та прогнозування часових рядів призначені для обробки однієї сезонності в часовому ряду, але за наявності множинної сезонності ці методи не працюють задовільно. Застосування методів декомпозиції часового ряду характеризується обчислювальною складністю. Використання методів машинного навчання також не завжди є доцільним з низки різноманітних причин. Таким чином, необхідно використовувати прості адаптивні моделі, на основі вибраних шаблонів, для прогнозування сезонних даних складної структури, що повторюються. Основна мета цієї статті – розробити успішну адаптивну модель та запропонувати методи її використання для короткострокового прогнозування кількості транзакцій на основі даних у вигляді часових рядів. Для цілей оцінки використовується набір погодинних рядів кількості покупців (транзакцій) деяких магазинів роздрібної мережі, що характеризуються множинною сезонністю. Результати обчислювальних експериментів показують, що запропонована модель на основі шаблонів є досить ефективною для отримання короткострокових прогнозних значень. Ця модель, що характеризується простотою, інтуїтивною зрозумілістю і мінімальним числом параметрів, фактично може бути застосована до будь-якої області даних, представлених часовими рядами.
  • Ескіз
    Документ
    Прогнозирование потребительского спроса на сезонные товары с использованием вектора кривой продаж
    (НТУ "ХПИ", 2018) Никульченко, Артем Александрович
    Предложен метод прогнозирования спроса на сезонные товары с использованием вектора распределения объемов продаж в течение года или вектора кривой продаж, компонентами которого являются объемы недельных продаж рассматриваемого либо аналогичного товара, полученные на основе статистики продаж за предыдущий календарный год. Условием применимости предложенного метода является выполнение гипотезы о сходимости соответствующих недельных объемов продаж двух последовательно идущих лет и гипотезы о существовании групп товаров со схожей динамикой продаж. Применение метода позволяет построить прогноз спроса на товар в течение следующей недели на основе данных об объемах продаж за предыдущие несколько недель текущего и предыдущего годов, а также данных об объемах продаж за интересующую неделю предыдущего года. Представлены особенности программной реализации предложенного метода прогнозирования спроса с использованием микро-сервисной архитектуры на основе платформы Google Cloud Platform, с использованием таких компонентов как Google Kubernetes Engine, Google BigQuery, Redis. Для снижения вычислительной нагрузки на основную систему выполняется копирование необходимых данных для анализа в OLAP-систему и построение требуемого прогноза без использования OLTP-системы. Приведены результаты численного эксперимента по прогнозированию спроса на товар, полученные на основе реальных данных. Выполнено сравнение результатов прогнозирования спроса, полученных с использованием вектора кривой продаж и метода скользящего среднего. Показана возможность использования данного метода прогнозирования спроса в качестве компоненты системы автоматизированного управления запасами в сетях поставок.