Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 11
  • Ескіз
    Документ
    Визначення оптимальної потужності абсорбційного теплового насосу при інтеграції до теплової схеми ПТ-60/70-130/13
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Шубенко, Олександр Леонідович; Усатий, Олександр Павлович; Бабак, Микола Юрійович; Форкун, Яна Борисівна; Сенецький, Олександр Володимирович
    Вирішується задача визначення оптимальної теплової потужності абсорбційного теплового насоса з паровим нагріванням при одноступеневій регенерації (СОР = 1,71). Розглядуваний тепловий насос інтегрований в теплову схему парової турбіни ПТ-60/70-130/13. Графік теплопостачання для даного паротурбінного циклу становить 150/70 °С. Також установкою виробляється пар на технологічні потреби. Визначення теплових та витратних характеристик абсорбційного теплового насоса здійснюється з використанням побудованої та запропонованої апроксимаційної математичної моделі. На підставі проведеного аналізу та наявного досвіду сформульовано оптимізаційну задачу. Функцією мети є вибір оптимальної потужності інтегрованого абсорбційного теплового насоса за умови оптимальної витрати енергетичного палива. Пошук оптимальної теплової потужності абсорбційного теплового насоса здійснювався за умови відпуску пари через регульований виробничий відбір турбіни з параметрами 1,296 МПа, 280 °С. Були розглянуті варіанти для змінної витрати пари на технологічні потреби (0, 20, 50 та 80 т/год). Умовою була постійність витрати протягом року. Отримані результати показали, що щодо всіх розглянутих режимів завантаження турбіни, оптимальне значення потужності абсорбційного теплового насоса є ідентичним і становить ~ 17,25 МВт. Розрахункові дослідження показали, що за вартості електроенергії 0,13 дол./(кВт·ч) та умовного палива 309 дол./т енергоблок з турбіною ПТ-60/70-130/13 та інтегрований абсорбційний тепловий насос (тепловою потужністю 15–18 МВт) при виробничому навантаженні понад 20 т/год пари, а також витраті оборотної мережної води на теплопостачання понад 1550 т/год дозволить отримати окупність проекту енергозбереження менше 3 років. Наступним позитивним ефектом є те, що економія палива дозволяє знизити викиди СО₂ на 9321 т і NOₓ на 48 т. За результатами досліджень спостерігаємо позитивний екологічний ефект від інтеграції абсорбційного теплового насоса в існуючу теплову схему.
  • Ескіз
    Документ
    Тепловий стан робочих лопаток ЦНТ теплофікаційної турбіни Т-250/300-240
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Шубенко, Олександр Леонідович; Голощапов, Володимир Миколайович; Котульська, Ольга Валеріївна; Парамонова, Тетяна Миколаївна; Сенецька, Дар'я Олегівна
    Розглянуто важливу проблему дослідження температурного стану циліндру низького тиску потужної теплофікаційної турбіни, яка працює, на відміну від конденсаційних турбін, в умовах значних змін електричного та теплового навантаження. Це пов'язано з тим, що циліндр низького тиску теплофікаційних турбін в опалювальний сезон із-за великих відборів пари на теплофікацію працює у маловитратних режимах. Такі умови експлуатації супроводжуються зародженням вихрових структур у проточній частині, що призводить до значного росту втрат механічної енергії і, як слідство, до росту температур елементів проточної частини. Метою дослідження є визначення теплового стану пари в широкому діапазоні зміни режимів експлуатації теплофікаційної турбіни. Виконано аналіз результатів експериментальних досліджень, отриманих на натурних циліндрах низького тиску потужної парової турбіни Т-250/300-240 різними авторами в умовах широкої зміни параметрів експлуатації (тиск в конденсаторі, витрата пари в проточній частині, температура нижнього опалювального відбору). Це дало змогу визначити розподіл температур по висоті робочої лопатки останнього ступеня, що представляє найбільший інтерес в умовах роботи на маловитратних режимах. Встановлено місце мінімальної температури та запропоновано залежність для її визначення на виході з робочого колеса ступеня з урахуванням того, що основним генератором тепла при нагріві пари є вихор, який обертається в міжвенцевому зазорі. Показано, що граничне значення витрати пари через останній ступень, що відповідає переходу течії з області вологої пари в область перегрітої пари, при заданому рівні температури в нижньому опалювальному відборі, залежить від тиску в конденсаторі і може бути визначено у вигляді функції цих параметрів. При цьому, чім менша температура в нижньому опалювальному відборі та тиск у конденсаторі, тим при менших витратах спостерігається перехід від вологої до перегрітої пари, а зростання процесної вологості на виході з робочого колеса відбувається при витраті пари завбільшки ніж її граничне значення.
  • Ескіз
    Документ
    Витрати потужності на привод турбінного ступеня при маловитратних режимах
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Шубенко, Олександр Леонідович; Альохіна, Світлана Вікторівна; Голощапов, Володимир Миколайович; Котульська, Ольга Валеріївна; Парамонова, Тетяна Миколаївна; Сенецька, Дар'я Олегівна
    Розглянуто задачу по визначенню витрат потужності під час роботи турбінного ступеня в маловитратному режимі. Для її вирішення використаний теоретично-експериментальний підхід, побудований на одновимірній теорії руху нестисливого робочого середовища та результатів експериментального дослідження ряду моделей ступенів великої віяловості, в якому робочим середовищем служить повітря. При експлуатації теплофікаційних турбін циліндри низького тиску до 85 % часу працюють в області маловитратних режимів як із частково, так і повністю закритою поворотною діафрагмою регулюючої ступені. При зниженні об'ємної витрати пари в проточній частині циліндру низького тиску на маловитратних режимах розвивається привтулковий відрив потоку і формується вихор у міжвінцевому зазорі ступені. Режим, при якому потужність, що підводиться до робочого колеса, витрачається на підтримку цих течій, відповідає "чисто" вентиляційному режиму. На відміну від існуючих методик для визначення вентиляційних витрат потужності у ступенях великої віяловості в роботі пропонується залежність, яка базується на геометричній конфігурації ступенів циліндру низького тиску теплофікаційних турбін та умовах їх експлуатації. Враховуючи процеси, що відбуваються в ступені, та дані, отримані на експериментальному стенді, визначено формули для врахування складових витрат потужності – функції впливу кутів виходу потоку з направляючого апарата ступені; впливу віяловості l/Dcp; впливу відносної ширини робочої лопатки B/Dcp та кута нахилу периферійного меридіонального обводу γм. Отримані залежності, що дозволяють визначити коефіцієнти витрат потужності для ступеня на вентиляційному режимі та режимі роботи до холостого ходу, дають змогу обчислити витрати потужності у всьому діапазоні зміни маловитратних режимів. На прикладі останнього ступеня турбіни Т-250/300-240 виконано зіставлення результатів розрахункових досліджень за запропонованою залежністю з результатами, що отримані в реальних умовах натурних експериментів, яке показало, що їх розходження не перевищує 5 %.
  • Ескіз
    Документ
    Бінарна електрогенеруюча установка для утилізації теплоти димових газів котлів
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Шубенко, Олександр Леонідович; Сенецький, Олександр Володимирович; Бабак, Микола Юрійович
    Робота присвячена розробці сучасних теплових схем для виробництва електричної енергії при утилізації теплоти димових газів котлів енерговузлів. На прикладі типової районної котельні досліджено параметри та потенціал теплоти, яка скидається до атмосфери з димовимигазами котлів, та визначено, що їх достатньо для генерації електричної енергії шляхом реалізації так званих органічних циклів Ренкіна. Для утилізації теплоти вихідних газів з температурою 280 °С при їх витраті 10 кг/с було досліджено триконтурну електрогенеруючу установку, яка подібна тим, що використовуються у геотермальній енергетиці. Проаналізовано ряд турбінних робочих тіл, що відповідають необхідним вимогам, та рекомендовано найбільш підходящі. Беручи до уваги характеристики джерела теплоти, з метою визначення раціональної конфігурації схеми виконано 50 розрахунків багатоконтурних теплових схем енергоустановок, що працюють на різних робочих тілах. Результати досліджень показали, що ефективність (електричний ККД) та потужність турбінного циклу визначається потенціалом скидної теплоти, термодинамічними властивостями робочого тіла, структурними та параметричними характеристиками схеми. Серед досліджених найкращі показники: електричний ККД 20,6 %, «корисну» електричну потужність 357 кВт при температурі вихідних газів 131 °С мала триконтурна утилізаційна установка з робочими тілами Вода / R-245fa / R-245fa. Варіант схеми з робочими тілами Вода / R-600a / R-600a програвав кращому варіанту ~ 8 кВт електричної потужності, але був визнаним більш перспективним, оскільки фреон R-600a (ізопропан) має споживчі переваги над R-245fa. Були також проведені розрахункові дослідження бінарної теплової схеми енергоустановки, які показали, що раціональним є використання для 1-го контуру Води, для 2-го – R-600a. Таке рішення дозволило отримати розрахункову «корисну» електричну потужність енергокомплексу ~ 290,8 кВт (1-й контур ~ 129 кВт, 2-й ~ 161,8 кВт). Програш бінарної схеми по «корисній» електричній потужності перспективному варіанту триконтурної схеми компенсується суттєвим спрощенням теплової схеми і, як наслідок, значно меншими капітальними витратами. Питома маса запропонованого теплообмінного обладнання установки з бінарною тепловою схемою становить ~ 150 кг/кВт. Враховуючи властивості робочого тіла, здійснено попередню проробку конструкцій турбін 1-го (Вода) та 2-го (R-600a) контурів. Для 1-го контуру запропоновано використовувати 6-ти ступінчату осьову турбіну, для 2-го – одноступінчату радіальну. Розрахунковим шляхом визначені геометричні характеристики проточних частин турбін. Попередня спрощена оцінка простого терміну окупності свідчить о непоганих перспективах впровадження запропонованої енергозберігаючої установки.
  • Ескіз
    Документ
    Підвищення ефективності останнього ступеня потужної парової турбіни при супергідрофобному покритті соплового апарата
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Шубенко, Олександр Леонідович; Сафонов, Володимир Йосипович; Бабак, Микола Юрійович; Сенецький, Олександр Володимирович; Бояршинов, Олексій Юрійович
    Досліджувалась можливість використання супергідрофобних (SH) покриттів поверхонь напрямного апарату останнього ступеню для підвищення якості проточної частини потужної парової турбіни. Показано, що реалізація цієї пропозиції повинна привести до суттєвого зменшення розміру крапель вологи в проточній частині, та, як наслідок, до збільшення ресурсу робочих лопаток і електричної генерації. Останнє відбувається за рахунок зменшення втрат енергії: на тертя вологої пари по сопловим лопаткам, при ударах крапель вологи та обтіканні робочих лопаток, а також зменшення витрати пари на периферійну сепарацію. Експертним оцінюванням параметрів, що визначають це зменшення втрат та витрат, прогнозовано обсяг додаткової генерації електричної енергії від впровадження SH покриттів на соплах останнього ступеня турбіни К-325-23,5 АТ «Турбоатом» (довжина робочої лопатки 1030 мм). Границі відповідних діапазонів зміни параметрів відповідають оптимістичному та песимістичному варіантам оцінки характеристик покриття та турбоустановки (додаткова електрична генерація, вартість та термін окупності SH покриття). Розглядалися три варіанти SH покриття поверхні соплової лопатки останнього ступеня: усієї поверхні, тільки увігнутої сторони сопла та тільки верхньої половини увігнутої сторони. За розрахунками очікувана зміна електричної потужності турбіни типу К-300 для цих варіантів покриття знаходиться в інтервалах 525 кВт–372 кВт та 315 кВт–237 кВт відповідно за оптимістичними та песимістичними оцінками. Визначено строк окупності SH покриття при нанесенні його тільки на верхню половину увігнутої сторони сопла при прийнятих лінійних законах зменшення втрат при деградації покриття в залежності від його витривалості та ціни. Простий очікуваний термін окупності вказаного виконання SH покриття соплової лопатки останнього ступеня турбіни К-325-23,5 при витривалості 10000 год (річному напрацюванні 6307 год) складе ~ 16 місяців при ціні покриття 0,425 USD/см2. SH покриття сопла вологопарового ступеня є перспективним рішенням для впровадження у разі його витривалості більшій ніж 5500 год при середньо прогнозних ціні покриття та зменшенні втрат енергії і витрат пари при периферійній сепарації.
  • Ескіз
    Документ
    Збільшення ресурсу і електричної потужності останнього ступеню парової турбіни при супергідрофобному покритті її соплових апаратів
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Шубенко, Олександр Леонідович; Сафонов, Володимир Йосипович; Бабак, Микола Юрійович; Сенецький, Олександр Володимирович; Євич, Микола Леонідович; Бояршинов, Олексій Юрійович
    Проведено аналіз структури руху і утворення крупних крапель в міжлопатковому каналі парової турбіни. Отримано, що попадання крапель на поверхню лопаткового апарату призводить до виникнення плівки з наступним зривом потоку з вихідної кромки у вигляді крупних ерозійнонебезпечних крапель. Саме тому виникає задача оцінки можливості впровадження нанотехнологій на основі супергідрофобних покриттів для підвищення ефективності та надійності проточних частин парових турбін. Досліджувалась можливість використання супергідрофобних покриттів поверхонь напрямних апаратів вологопарових ступенів для підвищення якості проточної частини потужної парової турбіни. Проаналізовано сучасні підходи до нанесення супергідрофобних покриттів на металеві поверхні. Наведено загальну структуру ерозійно-стійкого покриття, що включає металеву матрицю, полімерний полісилоксановий наповнювач з активованих рівномірно розподілених по товщині гідрофобних частинок різної форми, в тому числі лускатих, і внутрішній ерозійно-стійкий шар. Розглянуто особливості фізичних процесів: змочуваності твердих поверхонь, течії вологої пари в турбіні, стан проблеми. Виконано оцінки з визначення впливу супергідрофобних покриттів, при нанесенні їх на сопловий апарат вологопарового ступеня, на втрати енергії та витрати пари у ступені турбіни. Уперше показано, що реалізація цієї пропозиції повинна привести до суттєвого зменшення розміру крапель вологи в проточній частині та, як наслідок, до збільшення ресурсу робочих лопаток і електричної генерації. Останнє відбувається за рахунок зменшення втрат енергії на тертя на соплових лопатках, при ударах крапель вологи та обтіканні робочих лопаток, а також падіння витрати пари при сепарації. Експертним оцінюванням параметрів, що визначають це зменшення втрат, прогнозовано обсяг додаткової генерації від впровадження супергідрофобних покриттів на соплах останнього ступеня турбіни К-325-23,5.
  • Ескіз
    Документ
    Научно-методологический подход к созданию энергосберегающих технологий на основе установки турбин малой мощности на низкокипящих рабочих телах
    (Национальный технический университет "Харьковский политехнический институт", 2019) Шубенко, Александр Леонидович; Бабак, Николай Юрьевич; Сенецкий, Александр Владимирович; Sarapin, Volodymyr
    Проведен анализ тенденции изменения использования топливно-энергетических ресурсов для выработки электроэнергии. Показано, что все большее внимание уделяется выработке электрической энергии на основе утилизации вторичных энергетических ресурсов (ВЭР). Для упрощения решения задачи энергосбережения на этапе создания новых энергетических установок и при совершенствовании существующих объектов, имеющих в своем составе ВЭР достаточного потенциала, построена и предложена иерархическая структура комплексного методологического подхода. Методологический подход позволяет оценить целесообразность решения задачи энергосбережения на основе реализации паротурбинных циклов на низкокипящих рабочих телах. Структура подхода представляет собой определенную совокупность и последовательность действий, начиная с анализа источника теплоты и заканчивая расчетом и подбором теплообменного и турбинного оборудования. При этом задача поиска рационального решения решается на каждом этапе формирования тепловой схемы. Согласно представленному методологическому подходу выбирается рабочее тело, формируется тепловая схема, рассчитываются теплообменники и турбина. Предложено выбирать теплообменное оборудование из существующего в нефтехимической отрасли, что позволяет снизить затраты при реализации проекта. Более сложным элементом тепловой схемы является турбина, которая в большинстве случаев требует индивидуального подхода. Это приводит к необходимости проектирования новой проточной части для каждого отдельного случая. Показана важность определения оптимальных соотношений расхода и степени расширения рабочего тела в проточной части турбины с учетом особенностей проектирования и изготовления лопаточных аппаратов. В качестве примера представлены расчетные исследования когенерационной энергетической установки, для которой получены характеристики тепловой схемы, предложены рациональные варианты теплообменного оборудования, а также подобрана оптимальная степень расширения в турбине для получения максимальной эффективности энергетической установки и технически реализуемой проточной части турбины.
  • Ескіз
    Документ
    Енергозбереження на газових компресорних станціях за рахунок корисного використання енергії надлишкового тиску паливного газу
    (НТУ "ХПІ", 2018) Шубенко, Олександр Леонідович; Сарапін, Володимир Павлович; Сарапіна, Марина Володимирівна; Куліш, Владислав Миколайович
    Розглянуто значення природного газу в житті суспільства і необхідність здійснення його збереження в сучасних умовах. Описано умови транспортування газу на великі відстані, призначення та принцип роботи газових компресорних станцій на прикладі КС-10 ЦГТП/32,4-55. Проведено розрахунок термодинамічних характеристик газотурбінного двигуна АІ-336-2-8, що є енергоприводом на компресорній станції. Визначено показники його енергоспоживання та розраховано кількість викидів СО₂ та NOx в атмосферне повітря. Показано, що потенційна енергія природного газу, який служить паливом для двигуна, безповоротно втрачається у регулюючому крані. Зазначено також, що одним з недоліків роботи газотурбінного двигуна є залежність ефективності його роботи від температури атмосферного повітря. Розглянуто можливість вдосконалення технологічної схеми компресорної установки з метою здійснення енергозбереження. Запропоновано технічне рішення, що полягає у використанні потенціальної енергії паливного газу при встановленні турбодетандера замість регулюючого крана і застосуванні його механічної роботи для стиснення атмосферного повітря перед компресором газотурбінного двигуна. Показано, що додаткове використання холодопродуктивності турбодетандера для охолодження атмосферного повітря перед компресором також дозволить досягти підвищення коефіцієнта корисної дії двигуна. Побудована модель енергоефективної установки і виконані розрахункові дослідження показників досягнення економії паливного газу та зменшення обсягів викидів продуктів його горіння. Проведено дослідження доцільності впровадження запропонованого технічного рішення, яке показало перспективність реалізації розглянутого підходу до рішення задачі енергозбереження. Розраховані потенційні значення річної економії природного газу у випадку широкого впровадження запропонованого удосконалення на компресорних станціях України.
  • Ескіз
    Документ
    Температурное состояние последних ступеней цилиндров низкого давления теплофикационных турбин на малорасходных режимах
    (НТУ "ХПИ", 2018) Шубенко, Александр Леонидович; Голощапов, Владимир Николаевич; Бабенко, Ольга Анатольевна
    Предложен методологический подход к определению затрат энергии для ступени, работающей в области малорасходных режимов, базирующийся на формуле Зутера-Траупеля. На основе обобщения экспериментальных данных получены зависимости для режима холостого хода ступени, величины расхода пара и ее влияния на потребление мощности. Проанализировано изменение температуры пара при различных значениях расхода и давления в конденсаторе, построены зависимости изменения температуры и удельного объема во всем диапазоне малорасходных режимов.
  • Ескіз
    Документ
    Утилізація теплоти димових газів котельні шляхом використання органічного циклу Ренкіна
    (НТУ "ХПІ", 2018) Шубенко, Олександр Леонідович; Маляренко, Віталій Андрійович; Сенецький, Олександр Володимирович; Бабак, Микола Юрійович
    Визначається доцільність впровадження на водогрійній котельні з котлами ПТВМ-100, що спалюють природний газ, утилізаційної електрогенеруючої установки. Остання побудована на базі органічного циклу Ренкіна та обігрівається димовими газами котлів. Показано, що ефективним робочим тілом для такої установки є фреон R600a. Виконано розрахунки теплової схеми установки на трьох режимах функціонування на протязі року; визначені терміни її окупності при електричній потужності 100, 200 та 300 кВт.