Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Modified method of constructuring a multivriate linear regression given by a redundant description
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Pavlov, Alexander Anatolievich; Holovchenko, Maxim Nikolaevich
    A number of scientific works of Prof. O. A. Pavlov and his disciples is devoted to the development of an original method of efficient estimation of coefficients at nonlinear terms of multivariate polynomial regression given by a redundant description under the conditions of an active experiment. The solution of the formulated problem is reduced to the sequential construction of univariate polynomialregressions (finding efficient estimates for the coefficients at nonlinear terms) and solving the corresponding systems of linear nondegenerate equations, the variables of which are the estimates for coefficients at nonlinear terms of the multivariate polynomial regression given by the redundant description. Thus, the problem was reduced to the estimation of the coefficients at linear terms of a multivariate linear regression given by a redundant description in the conditions of an active experiment. We have proposed an original method of its solution that uses a cluster analysis algorithm. The algorithm’s implementation significantly reduces the enumeration of partial descriptions of multivariate linear regression followed by the finding of the residual sum of squares for each of them. This allows using the chi-squared criterion to build a linguistic variable which value gives a qualitative assessment (high reliability, acceptable reliability, low reliability, unreliability) to the obtained result. The analysis of the computational experiments made it possible to modify the proposed method, which significantly increased its efficiency, first of all, of finding a reliable structure of the sought multivariate linear regression given by the redundant description. The method modification, in particular, has reduced the enumeration of partial descriptions and has led to a more efficient use of the general procedure of the least squares method.
  • Ескіз
    Документ
    Construction of a multivariate polynomial given by a redundant description in stochastic and deterministic formulations using an active experiment
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Pavlov, Alexander Anatolievich; Holovchenko, Maxim Nikolaevich; Drozd, Valeria Valerievna
    We present the methods for constructing a multivariate polynomial given by a redundant representation based on the results of a limited active experiment. We solve the problem in two formulations. The first is the problem of constructing a multivariate polynomial regression given by a redundant representation based on the results of a limited active experiment. The solution method is based on the previous results of Professor A. A. Pavlov and his students showing the fundamental possibility of reducing this problem to the sequential construction of univariate polynomial regressions and solving the corresponding nondegenerate systems of linear equations. There are two modifications of this method. The second modification is based on proving for an arbitrary limited active experiment the possibility of using only one set of normalized orthogonal polynomials of Forsythe. The second formulation refers to the solution of this problem for a particular but sufficient from the practical point of view case when an unknown implementation of a random variable is not added to the initial measurement results during an active experiment. This method is a modification of the solution method for the multivariate polynomial regression problem. Also, we used the main results of the general theory (which reduces the multivariate polynomial regression problem solving to the sequential construction of univariate polynomial regressions and solution of corresponding nondegenerate systems of linear equations) to consider and strictly substantiate fairly wide from the practical point of view particular cases leading to estimating the coefficients at nonlinear terms of the multivariate polynomial regression as a solution of linear equations with a single variable.