Вісники НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494
З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.
Переглянути
2 результатів
Результати пошуку
Документ Оцінка ефективності процесів переробки концентрованих розчинів хлориду натрію з отриманням алюмінієвого коагулянту(Національний технічний університет "Харківський політехнічний інститут", 2020) Крижановська, Яна Петрівна; Гомеля, Микола Дмитрович; Шаблій, Тетяна Олександрівна; Вакуленко, Анна КостянтинівнаУ роботі досліджені процеси електрохімічної переробки розчинів хлориду натрію з отриманням хлориду алюмінію і лугу в трикамерному електролізері з аніонообмінною мембраною МА-41 і катіонообмінною мембраною МК-40 та в двокамерному електролізері з катіонообмінною мембраною МК-40. Представлений спосіб переробки сольових концентратів із застосуванням розчинного алюмінієвого аноду є економічно доцільним, так як у результаті електролізу одночасно відбувається демінералізація рідких відходів до рівня нормативних вимог та виробництво з вихідних концентратів товарної продукції. Недоліком представленого способу отримання коагулянту є взаємодія алюмінію із водою. Проте, доведено, що із підвищенням анодної щільності струму під час електролізу вихід хлориду алюмінію практично повністю обумовлений електрохімічним розчиненням аноду, а хімічне розчинення алюмінію майже відсутнє. Стабільність отриманих розчинів коагулянтів протягом тривалого часу підтримується низькими значеннями реакції середовища (рН ≤ 3). Так, при силі струму 1 А (щільність струму 8,34 А/дм2) та вихідній концентрації хлориду натрію 1900 мг-екв/дм3 сумарна концентрація іонів алюмінію в отриманому розчині досягає 3884 мг-екв/дм3. На хімічно розчинений алюміній припадає не більше 12 %. За даних вихідних параметрів вихід іонів алюмінію з урахуванням хімічного розчинення аноду складає 100–108 %. Одночасно в катодній камері відбувається концентрування лугу до рівня приблизно 1500 мг-екв/дм3. Його вихід за струмом при цьому сягає 92 %. Ступінь дифузії хлорид-іонів через аніонообмінну мембрану з робочої камери в анодну область становить 99 %. Показано, що процес електролізу розчину хлориду натрію в двокамерному електролізері з катіонообмінною мембраною проходить не так ефективно, як у випадку із застосуванням трикамерного електролізера. На початковій стадії процесу вихід за струмом становить по хлориду алюмінію 61 %, а по лугу 64 %. У подальшому через отруєння катіонообмінної мембрани катіонами алюмінію, що блокують всі аніонні функціональні групи даної мембрани, процес припиняється.Документ Технічні рішення зі зниження викидів монооксиду вуглецю з димовими газами печей для випалювання електродів(Національний технічний університет "Харківський політехнічний інститут", 2020) Іваненко, Олена Іванівна; Гомеля, Микола Дмитрович; Панов, Євген Миколайович; Оверченко, Тетяна АнатоліївнаПоказано, що потрапляння близько 1,7611 млн тон в рік отруйного монооксиду вуглецю в атмосферу України становить серйозну проблему, що повинна вирішуватися на рівні промислових виробництв. Обгрунтовано необхідність розробки технічних рішень щодо зниження викидів монооксиду вуглецю димових газів виробництва електродів, що утворюються головним чином у печах для випалювання. Визначено, що необхідними умовами для вибору каталізатора окислення монооксиду вуглецю є дешевизна, доступність, розповсюдженість в Україні, високі експлуатаційні характеристики та поліфункціональність з точки зору екологічного каталізу, забезпечуючи принципово безвідходну екологічну чисту технологію. При цьому вимогою до розміщення контейнерів з каталізатором є їх розташування безпосередньо в камерах печі для випалювання електродів, що забезпечує незначні матеріальні витрати на проведення процесу каталітичного окислення СО. Доведено, що при врахуванні адсорбційних властивостей цеолітів-клиноптилолітів Сокирницького родовища Закарпатській області України та можливості їх практичного застосування в промислових масштабах, використання даних природних матеріалів з метою вирішення екологічних проблем є актуальним і не викликає сумніву. В результаті проведення дослідження процесу окислення СО в створеній лабораторній установці було визначено, що для досягнення 100 %-вої конверсії монооксиду вуглецю за температури 390 ºС необхідно застосовувати оксидно-мідно-марганцевий каталізатор 30:70 (30 % CuO+70 % MnO2) на основі цеоліту. Разом з тим, більшість переваг для використання має оксидно-марганцевий каталізатор на основі цеоліту, при застосуванні якого ступінь перетворення СО складає 92,8 %. Даний висновок обґрунтовано не лише можливістю отримання каталізатора без попередньої обробки цеоліту, навіть з відпрацьованих сорбентів очищення марганцевмісної природної води, що притаманно Україні, але і нетоксичністю у випадку захоронення або зберігання на звалищах, так як компоненти каталізатора мають природне походження. Мікрорентгеноспектральним аналізом шліфа зразка визначено вміст основних елементів оксидно-марганцевого каталізатора на основі цеоліту. Розраховано його питому поверхню, загальний об'єм пор і розподіл пор за розміром за допомогою адсорбційних даних, отриманих низькотемпературними методами адсорбції/десорбції азоту, з використанням методів Брунера-Еммета-Теллера, Барретта-Джойнера-Халенди та теорії функціональної щільності. Шляхом якісного рентгенофазового аналізу, визначено фазовий склад зразку порошку поверхні каталізатора. Розроблено технічне рішення зі зниження викидів монооксиду вуглецю з димовими газами печей для випалювання електродів, яке включає розміщення контейнерів прямокутного перерізу з оксидно-марганцевим каталізатором на основі цеоліту у вогневих каналах цих печей у камерах, що підігріваються димовими газами.