Варіант алгоритму одночасного приведення пучка двох матриць до ланцюгової форми

dc.contributor.authorГрищенко, Володимир Миколайовичuk
dc.date.accessioned2017-02-20T08:01:36Z
dc.date.available2017-02-20T08:01:36Z
dc.date.issued2016
dc.description.abstractРозглядається узагальнена проблема власних значень та власних векторів. Один з найбільш відомих та конструктивних підходів рішення цієї проблеми є QR алгоритм. Він застосовується у більшості випадків до матриці, підготовленої до правої майже трикутної форми. В роботі запропоновано один з підходів попереднього розрідження пучка двох матриць до канонічної ланцюгової форми, що містить мінімальну кількість ненульових позицій. Перетворення здійснюються з використанням стійких ортогональних та елементарних матриць. Для чисельної апробації вибрана модельна невироджена матриця "спіральної" форми 7-го порядку. В роботі приведені результати обчислень згідно наведеного алгоритму для трикутної форми матриці мас, узагальненої форми Хесенберга та ланцюгової форми з обмеженою кількістю значущих цифр. Приведено також невироджені ліві та праві перетворення, що вирішують цю проблему. Результати мають задовільну для практичних розрахунків точність.uk
dc.description.abstractThe generalized eigenvalue problem is consider. One of the most known and structural approaches of decision of this problem is QR algorithm. He is used in most cases to the matrix, to geared up to the right almost three-cornered form. One of approaches of previous dilution of bunch of two matrix is in process offered to the canonical chain form which contains the least of unzero positions.Transformations are carried out with the use of firm ortogonal and elementary matrix. For numeral approbation the model unzero matrix of "spiral" formof 7th order is chosen. The results of calculations are in process resulted in obedience to the resulted algorithm for the three-cornered form of matrix of the masses, generalized form of Hesenbergs and chain form, with the limited amount of meanings numbers. The unzero left and right transformations which settle this problem are resulted also. Results have satisfactory to the practical calculations exactness.en
dc.identifier.citationГрищенко В. М. Варіант алгоритму одночасного приведення пучка двох матриць до ланцюгової форми / В. М. Грищенко // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Сер. : Динаміка і міцність машин = Bulletin of National Technical University "KhPI" : coll. of sci. papers. Ser. : Dynamics and Strength of Machines. – Харків : НТУ "ХПІ", 2016. – № 46 (1218). – С. 21-25.uk
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/27277
dc.language.isouk
dc.publisherНТУ "ХПІ"uk
dc.subjectвласні значенняuk
dc.subjectматрицяuk
dc.subjectканонічна формаuk
dc.subjectортогональні матричні перетворенняuk
dc.subjectвласні векториuk
dc.subjectQR алгоритмuk
dc.subjectелементарні матриціuk
dc.subjectортогональні матриціuk
dc.subjecteigenvalue problemen
dc.subjectmatrixen
dc.subjectcanonical formen
dc.subjectortogonal matrix transformationsen
dc.titleВаріант алгоритму одночасного приведення пучка двох матриць до ланцюгової формиuk
dc.title.alternativeA variant of algorithm of simultaneous adduction of bunch of two matrices is to chain formen
dc.typeArticleen

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
vestnik_KhPI_2016_46_Hryshchenko_Variant_alhorytmu.pdf
Розмір:
324.51 KB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: