Науково-технологічні засади плазмо-електролітного формування гетерооксидних покриттів для екотехнологій

Вантажиться...
Ескіз

Дата

2020

ORCID

DOI

Науковий ступінь

доктор технічних наук

Рівень дисертації

докторська дисертація

Шифр та назва спеціальності

05.17.03 – технічна електрохімія

Рада захисту

Спеціалізована вчена рада Д 64.050.03

Установа захисту

Національний технічний університет "Харківський політехнічний інститут"

Науковий керівник

Сахненко Микола Дмитрович

Члени комітету

Лісачук Георгій Вікторович
Сахненко Микола Дмитрович
Шабанова Галина Миколаївна

Видавець

Національний технічний університет "Харківський політехнічний інститут"

Анотація

Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.17.03 – технічна електрохімія (161 – хімічні технології та інженерія). ‒ Національний технічний університет "Харківський політехнічний інститут", Харків, 2020. Об’єкт дослідження ‒ електрохімічні та хімічні процеси на міжфазовій межі та в оксидному шарі при формуванні гетерооксидних покриттів на сплавах алюмінію і титану. Предмет дослідження – механізм процесу поверхневої обробки сплавів алюмінію та титану у лужних розчинах електролітів, технологічні параметри плазмо-електролітного оксидування, склад, структура та функціональні властивості гетерооксидних покриттів. Дисертацію присвячено розробці наукових засад технології плазмо-електролітного формування гетерооксидних покриттів заданого складу і функціональних властивостей на сплавах алюмінію (титану) для екотехнологій. Висунуто та експериментально доведено гіпотези щодо гомогенізації поверхні багатокомпонентних сплавів алюмінію (титану) та формування заданого рельєфу оксидної матриці плазмо-електролітним оксидуванням у лужних розчинах дифосфатів та формування міцноадгезованих гетерооксидних покриттів із широким спектром функціональних властивостей на сплавах алюмінію (титану), що реалізацується в одному технологічному процесі плазмо-електролітним оксидуванням у лужних розчинах дифосфатів за присутності сполук металів-допантів. За результатами комплексного дослідження плазмо-електролітного оксидування багатокомпонентних сплавів запропоновано нову парадигму інженерії поверхні, за якою в одному технологічному процесі проводять гомогенізацію поверхні оброблюваних матеріалів із мінімізацією вмісту їх легувальних елементів, утворення наперед заданої топографії монооксидної матриці Al₂O₃ (TiO₂) та одночасною інкорпорацією цільових допувальних компонентів. Запропоновано використання комплексних електролітів на основі дифосфатів лужних металів для прискорення електрохімічного розчинення, зв’язування та видалення легувальних елементів із поверхневих шарів багатокомпонентних сплавів алюмінію (титану), встановлено шляхи керування гомогенізацією поверхні та доведено, що ПЕО в розчині 0,5–1,0 моль/дм³ K₄P₂O₇ за густини струму 5–7 А/дм² дозволяє зменшити вміст легувальних елементів у поверхневих шарах в 4–5 разів та сформувати розвинену оксидну матрицю металу-носія, що склало підґрунтя для розробки узагальненої технологічної схеми процесу. Запропоновано стратегію синтезу гетерооксидних покриттів плазмо-електролітним оксидуванням легованих сплавів алюмінію (титану) з формуванням в одному процесі оксидної матриці металу-носія та інкорпорації оксидів металів-допантів; доведено, що співвідношення компонентів електроліту впливає на вміст допанта, морфологію та топографію поверхні гетерооксидного покриття. З використанням диференціальних залежностей dU/dt–U для опису кінетичних закономірностей та встановлення стадійності процесу плазмо-електролітного оксидування сплавів різного хімічного складу доведено, що відмінність кута нахилу таких залежностей на початкових ділянках ПЕО зумовлена формуванням оксидів різної природи, а домінанта реакцій розчинення компонентів сплаву над реакціями формування оксидів з високим питомим опором обумовлює появу плато на залежності dU/dt–U, протяжність якого відбиває формування гетерооксидного шару. Обґрунтовано концепцію інкорпорації оксидів Mn та Co до складу покриттів і доведено, що в лужних електролітах на основі дифосфатів при додаванні солей металів-допантів в режимі "спадаючої потужності" з варіюванням густини струму формуються гетерооксидні покриття Al₂O₃·MnOₓ із вмістом мангану до 36,0 ат.% та Al₂O₃·CoOᵧ із вмістом кобальту до 24,0 ат.%, що дозволило визначити оптимальні умови синтезу. Підтверджено утворення в запропонованих режимах матриці металу-носія із фазовою структурою корунду, в яку інкорпоровані оксиди металів-допантів змінної валентності. Встановлено, що значне зростання мікротвердості для системи Al | Al₂O₃ CoOᵧ зумовлено не тільки утворенням α-Al₂O₃ в каналах пробою, а і формуванням структури сапфіру CoAl₂O₄ за рахунок хімічного заміщення і доведено, що термообробка гетерооксидних покриттів при температурах 300–500°С зумовлює зміну співвідношення оксидних форм допувальних компонентів при збереженні високих показників мікротвердості. Встановлено, що одностадійна плазмо-електролітна обробка поршня двигуна КамАЗ-740 у розчинах дифосфату з додаванням манганатів (VII) та солей кобальту (ІІ) дозволяє сформувати рівномірні міцноадгезовані каталітичні і теплозахисні гетерооксидні покриття оксидами мангану та кобальту, високу активність яких доведено в робочому процесі каталітичного горіння палива. Знайшли подальший розвиток уявлення про систему чинників впливу на склад, морфологію, топографію та структуру гетерооксидних покриттів на легованих сплавах алюмінію (титану) і залежність функціональних властивостей оксидних шарів від режиму формування та складу поверхні. Практичне значення одержаних результатів полягає в розробці варіативних технологічних схем плазмо-електролітної обробки багатокомпонентних сплавів алюмінію (титану) у розчинах дифосфатів із мінімізацією вмісту легувальних елементів у поверхневих шарах та формуванням гетерооксидних покриттів з підвищеним вмістом активних компонентів й заданими функціональними властивостями. Тестуванням розроблених покриттів на випробувальних стендах кафедри двигунів внутрішнього згоряння НТУ "ХПІ" встановлено зменшення викидів оксидів азоту й вуглецю та підвищення паливної економічності двигунів за рахунок внутрішньоциліндрового каталізу. Результатами випробувань гетерооксидних покриттів у Харківському науково-дослідному експертно-криміналістичному центрі МВС України встановлено їх підвищену корозійну стійкість та механічну міцність, що дозволило рекомендувати одержані матеріали для захисту від корозійного руйнування та підвищення механічної міцності капсюлей-детонаторів, які використовуються для проведення вибухових робіт. Підвищені механічні властивості та висока адгезійна міцність оксидних покриттів до основного металу підтверджено випробуваннями на АТ "УКРНДІХІММАШ". Теоретичні матеріали та практичні результати дослідження використано в освітньому процесі Національного аерокосмічного університету ім. М.Є. Жуковського "Харківський авіаційний інститут" при підготовці фахівців за спеціальністю "Теплоенергетика" та Військового інституту танкових військ НТУ «ХПІ» при підготовці курсантів за спеціальностями "Забезпечення військ (сил)" та "Озброєння та військова техніка". Науково-технічна новизна розробок підтверджується 7-ма патентами України та патентом Респубілки Казакстан, частина з яких відзначена дипломами Всеармійського конкурсу "Кращий винахід року", а саме: патент України № 116176 "Спосіб зниження токсичності газових викидів двигунів внутрішнього згоряння" (диплом I ступеня у номінації "Автомобільна техніка", 2017 рік); патент України № 117765 "Спосіб обробки поршнів двигунів внутрішнього згоряння" (диплом II ступеня у номінації "Автомобільна техніка", 2018 рік); патент України № 135696 "Поршень двигуна внутрішнього згоряння з каталітичним термостійким покриттям" (диплом "За оригінальність технічного рішення", 2019 рік).
Dissertation for the Degree of the Doctor of Engineering Sciences in the Specialty of 05.17.03 – technical Electrochemistry (161 – Chemical Technology and Engineering). – National Technical University "Kharkіv Polytechnic Institute", Kharkіv, 2020. The object of research is chemical and electrochemical processes in the volume of electrolyte, oxide coating and interface in the formation of heteroxide coatings on aluminum and titanium alloys. The subject of research is the mechanism of the surface treatment of aluminum and titanium alloys in alkaline solutions of electrolytes, technological parameters of plasma-electrolyte oxidation, composition, structure and functional properties of heteroxide coatings. The thesis is devoted to the development of scientific bases of plasma-electrolytic formation of heterooxide coatings of a given composition and functional properties on aluminum (titanium) alloys for ecotechnologies. Hypotheses were generated and experimentally proved concerning the homogenization of the surface of aluminum (titanium) multicomponent alloys and the formation of a given relief of the oxide matrix by plasma-electrolyte oxidation in alkaline solutions of diphosphates and the formation of strongly adhesed heteroxide coatings with a wide range of functional properties on aluminium (titanium) alloys by executing plasma-electrolytic oxidation in alkaline solutions of diphosphates with the presence of dopant metal compounds in one technological process. As a result of a comprehensive study of plasma-electrolytic oxidation of multicomponent alloys, a new paradigm of surface engineering is proposed, according to which in one technological process the surface of processed materials is homogenized with minimization of their alloying components, formation of predefined topography of Al₂O₃ (TiO₂) monoxide matrix and simultaneous incorporation of target alloying components. The use of complex electrolytes based on alkali metal diphosphates for acceleration of electrochemical dissolution, binding and removal of alloying components from the surface layers of multicomponent aluminum (titanium) alloys is proposed, ways to control surface homogenization are established and it is proved that PEO 1.0 in 0.5 mol/L K₄P₂O₇ solution at a current density of 5–7 A/dm² allows to reduce the content of alloying components in the surface layers by 4–5 times and to form developed oxide matrix of the metal-carrier, which became the basis for the development of a generalized flow chart. It is proposed to use a strategy for the synthesis of heteroxide coatings by plasma-electrolyte oxidation of alloyed aluminum (titanium) alloys with the formation of the oxide matrix of the metal-carrier and the incorporation of oxides of metal-dopants in one process; it is proved that the ratio of electrolyte components affects the content of dopant, morphology and topography of the heteroxide coating surface. With the use of differential dependences dU/dt–U in order to describe the kinetic laws and establish the stages of the process of plasma-electrolytic oxidation of alloys of different chemical composition, it is proved that the difference in the slope of such dependences at the initial sites of PEO is due to the formation of oxides of different nature, and the dominant of dissolution reactions of alloys components over the reaction of oxide formation with high resistivity cause the appearance of a plateau on the dU / dt – U dependence, the length of which reflects the formation of a heteroxide layer. The conception of incorporation of Mn and Co oxides into the coatings was substantiated and it is proved that in alkaline electrolytes, which are based on diphosphates, with the addition of metal-dopant salts in the mode of "decreasing power" with variation of current density heteroxide oxide coatings Al₂O₃·MnOₓ with manganese content up to 36 % and Al₂O₃·CoOᵧ with cobalt content up to 24.0 %, are formed that allowed to determine the optimal synthesis conditions. The formation of matrix of metal-carrier in proposed modes with a phase structure of corundum, in which oxides of dopant metals of variable valence are incorporated, is confirmed. It is established that a significant increase in microhardness for the system Al | Al₂O₃·CoOᵧ is caused not only by the formation of α-Al₂O₃ in breakdown paths, but also by the formation of the structure of CoAl₂O₄ sapphire due to chemical substitution and it is proved that heat treatment of heteroxide coatings at temperatures of 300–500 °C causes a change in the ratio of oxide forms of alloying components while maintaining high microhardness values. It is established that one-stage plasma-electrolyte treatment of the KamAZ-740 engine piston in diphosphate solutions with the addition of manganates (VII) and cobalt (II) salts allows to form uniform strongly adhered catalytic and heat-protective heteroxide coatings by oxides of manganese and cobalt, high activity of which was proved in the process of catalytic fuel combustion. The idea of the system of factors influencing the composition, morphology, topography and structure of heteroxide coatings on alloyed aluminum (titanium) alloys and the dependence of the functional properties of oxide layers on the mode of formation and surface composition was further developed. The practical significance of the obtained results lies in the development of variable technological schemes of plasma-electrolyte treatment of multicomponent aluminum (titanium) alloys in diphosphate solutions with minimization of alloying components in surface layers and formation of heteroxide coatings with high content of active components and given functional properties. Testing of the developed coatings on the test benches of the Department of Internal Combustion Engines of NTU "KhPI" revealed a reduction in emissions of nitrogen and carbon oxides and increase in fuel efficiency of engines due to internal cylinder catalysis. The results of tests of heteroxide coatings in the Kharkiv Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine established their increased corrosion resistance and mechanical strength, which allowed to recommend the obtained materials to protect against corrosion damage and increase the mechanical strength of detonator caps used for blasting. Increased mechanical properties and high adhesive strength of oxide coatings to the base metal were confirmed by tests at JSC "UKRNDIHIMMASH". Theoretical materials and practical results of the research were used in the educational process of the National Aerospace University named after M.E. Zhukovsky "Kharkiv Aviation Institute" in the training of specialists in the specialty "Thermal power" and the Military Institute of Armored Forces of NTU "KhPI" in the training of cadets in the specialties "Provision of troops (forces)" and "Armament and military equipment". The scientific and technical novelty of the developments is confirmed by 7 patents of Ukraine, some of which were awarded diplomas of the All-Army competition "Best Invention of the Year", namely: patent of Ukraine # 116176 "Method of reducing toxicity of gaseous emissions from internal combustion engines" (first-degree diploma certificate in nomination "Automotive Equipment", 2017); patent of Ukraine # 117765 "Method of processing pistons of internal combustion engines" (second-degree diploma certificate in nomination "Automotive Equipment", 2018); patent of Ukraine # 135696 "Piston of an internal combustion engine with a catalytic heat-resistant coating" (diploma certificate "For the originality of the technical solution", 2019).

Опис

Ключові слова

дисертація, плазмо-електролітне оксидування, багатокомпонентні сплави, поверхнева гомогенізація, гетерооксидні покриття, морфологія поверхні, корозійна тривкість, мікротвердість, екотехнології, plasma electrolytic oxidation, multicomponent alloys, surface homogenization, metal-dopant, heteroxide coating, functional properties, catalytic activity, ecotechnologies

Бібліографічний опис

Каракуркчі Г. В. Науково-технологічні засади плазмо-електролітного формування гетерооксидних покриттів для екотехнологій [Електронний ресурс] : дис. ... д-ра техн. наук : спец. 05.17.03 : галузь знань 16 / Ганна Володимирівна Каракуркчі ; наук. консультант Сахненко М. Д. ; Нац. техн. ун-т "Харків. політехн. ін-т". – Харків, 2020. – 392 с. – Бібліогр.: с. 279-334. – укр.