Влияние поперечного расстояния между отверстиями ∆ на эффективность плёночного охлаждения за парными отверстиями
Дата
2016
ORCID
DOI
10.20998/2078-774X.2016.09.03
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПИ"
Анотація
Представлены результаты численного моделирования пленочного охлаждения плоской поверхности при подаче охладителя через систему парных отверстий на поверхность пластины. Приводится сравнительный анализ результатов численного моделирования по влиянию параметра Δ на эффективность пленочного охлаждения пластины для парных отверстий. Выполнен анализ физической структуры потока и дано объяснение увеличения эффективности пленочного охлаждения. Для CFD моделирования был использован коммерческий пакет ANSYS CFX 14.
The improvement of thermal efficiency of modern gas turbines can be achieved through increase in the cooling efficiency. Traditional technology of the cooling jets supply through inclined cylindrical holes leads to the formation of the "kidney vortices", which transport hot gas under cooling jets. For all novel film cooling technologies is very important (i) to reduce the influence of secondary flows, (ii) to distribute coolant more uniformly in the spanwise direction, (iii) to minimize the coolant mixing with main hot flow. One of the promising technologies is the double jet film cooling configuration. The results are given on the numerical film cooling simulation at the coolant supply through the double jet holes at the flat plate inlet. Comparison of numerical simulation and experimental results is considered in terms of the spanwise distance Δ between holes of first and second row influence on the flat plate film cooling. The flow physical structure is analyzed and explanations are given of the film cooling efficiency growth. As found, at the constant β1 and β2 angle values the spanwise distance Δ demonstrates significant influence on the film cooling efficiency, which has the maximum at certain Δ/d ratio. The commercial software ANSYS CFX 14 was used for the numerical simulation.
The improvement of thermal efficiency of modern gas turbines can be achieved through increase in the cooling efficiency. Traditional technology of the cooling jets supply through inclined cylindrical holes leads to the formation of the "kidney vortices", which transport hot gas under cooling jets. For all novel film cooling technologies is very important (i) to reduce the influence of secondary flows, (ii) to distribute coolant more uniformly in the spanwise direction, (iii) to minimize the coolant mixing with main hot flow. One of the promising technologies is the double jet film cooling configuration. The results are given on the numerical film cooling simulation at the coolant supply through the double jet holes at the flat plate inlet. Comparison of numerical simulation and experimental results is considered in terms of the spanwise distance Δ between holes of first and second row influence on the flat plate film cooling. The flow physical structure is analyzed and explanations are given of the film cooling efficiency growth. As found, at the constant β1 and β2 angle values the spanwise distance Δ demonstrates significant influence on the film cooling efficiency, which has the maximum at certain Δ/d ratio. The commercial software ANSYS CFX 14 was used for the numerical simulation.
Опис
Ключові слова
численное моделирование, поверхность пластины, структура потока, геометрические параметры, film cooling, numerical simulation
Бібліографічний опис
Халатов А. А. Влияние поперечного расстояния между отверстиями ∆ на эффективность плёночного охлаждения за парными отверстиями / А. А. Халатов, Н. А. Панченко // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Темат. вип. : Енергетичні та теплотехнічні процеси й устаткування = Bulletin of National Technical University "KhPI" : coll. of sci. papers. Ser. : Power and Heat Engineering Processes and Equipment. – Харків : НТУ "ХПІ", 2016. – № 9 (1181). – С. 26-30.