Классификация объектов в адаптивных системах распознавания на основе функции взвешенного конкурентного сходства
Loading...
Date
Authors
item.page.orcid
item.page.doi
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Journal Title
Journal ISSN
Volume Title
Publisher
НТУ "ХПИ"
Abstract
В работе предложено естественное расширение области использования функции конкурентного сходства на взвешенные обучающие выборки w-объектов в адаптивных системах распознавания. Описан принцип классификации объектов методом k-ближайших соседей на основе функции взвешенного конкурентного сходства (wFRiS-функции). Приведены результаты экспериментальных исследований, подтвердившие эффективность предложенного подхода.
Author proposed the extension of the function of rival similarity that is used for weighted training samples of w-objects in adaptive recognition systems. Algorithm of k-nearest neighbors expansion was described in the article, which is based on the function of rival similarity for weighed samples of w-objects. Experimental results were confirmed the efficiency of the offered approach.
Author proposed the extension of the function of rival similarity that is used for weighted training samples of w-objects in adaptive recognition systems. Algorithm of k-nearest neighbors expansion was described in the article, which is based on the function of rival similarity for weighed samples of w-objects. Experimental results were confirmed the efficiency of the offered approach.
Description
Citation
Волченко Е. В. Классификация объектов в адаптивных системах распознавания на основе функции взвешенного конкурентного сходства / Е. В. Волченко // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Информатика и моделирование. – Харьков : НТУ "ХПИ". – 2012. – № 62 (968). – С. 18-25.