Моделювання програмованих одноелектронних наносхем

Вантажиться...
Ескіз

Дата

2020

ORCID

DOI

doi.org/10.20998/2222-0631.2020.01.05

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Видавець

Національний технічний університет "Харківський політехнічний інститут"

Анотація

Швидкодія та спеціалізація великих інтегральних схем завжди вступають в протиріччя з їх універсальністю, що розширює їх номенклатуру і викликає подорожчання електронних пристроїв. Усунути протиріччя між універсальністю і спеціалізацією можна шляхом розробки програ-мованих наноелектронних пристроїв, алгоритми роботи яких змінюються на вимогу розробника конкретної обчислювальної апаратури, тобто шляхом створення арифметико-логічних схем з програмованими характеристиками. При виготовленні таких схем використовується єдиний нанотехнологічний комплекс, а тому з точки зору технолога це – універсальні вироби. Налаштування самих мікро- чи наносхем на заданий алгоритм роботи виконує розробник апаратури, з точки зору якого ці схеми реалізують вузько спеціалізовані завдання. В результаті програмування вносяться зміни структури схем, які призводять до набуття заданих характеристик. Розробка питань теорії і практики використання мажоритарного принципу являється в теперішній час актуальною проблемою, оскільки при наноелектронному виконанні обчислювальних систем з програмованими структурами відбувається значне зниження їх вартості і суттєво спрощується етап автоматизованого системотехнічного проектування. Одна програмована наносхема замінює від 100 до 1000 інтегральних схем середнього ступеню інтеграції. Реалізоване комп’ютерне моделювання та проектування надійних програмованих наноелектронних пристроїв на базі технології квантових автоматів. При побудові одноелектронних схем комбінаційного та послідовностного типів використовується теорія мажоритарної логіки. Проаналізовано порядок побудови та програмування різних типів арифметико-логічних пристроїв.
The speed and specializations of large-scale integrated circuits always contradict their versatility, which expands their range and causes the rise in price of electronic devices. It is possible to eliminate the contradictions between universality and specialization by developing programmable nanoelectronic devices, the algorithms of which are changed at the request of computer hardware developers, i.e. by creating arithmetic circuits with programmable characteristics. The development of issues of theory and practice of the majority principle is now an urgent problem, since the nanoelectronic execution of computer systems with programmable structures will significantly reduce their cost and significantly simplify the design stage of automated systems. Today there is an important problem of developing principles for building reliable computer equipment. The use of mathematical and circuit modeling along with computer-aided design systems (CAD) can significantly increase the reliability of the designed devices. The authors prove the advantages of creating programmable nanodevices to overcome the physical limitations of micro-rominiatization. This continuity contributes to the accelerated introduction of mathematical modeling based on programmable nanoelectronics devices. The simulation and computer-aided design of reliable programmable nanoelectronic devices based on the technology of quantum automata is described. While constructing single-electron nanocircuits of combinational and sequential types the theory of majority logic is used. The order of construction and programming of various types of arithmetic-logic units is analyzed.

Опис

Ключові слова

квантові автомати, моделювання мажоритарних елементів, quantum automata, simulation of majority gates

Бібліографічний опис

Мельник О. С. Моделювання програмованих одноелектронних наносхем / О. С. Мельник, В. О. Козаревич // Вісник Національного технічного університету "ХПІ". Сер. : Математичне моделювання в техніці та технологіях = Bulletin of the National Technical University "KhPI". Ser. : Mathematical modeling in engineering and technologies : зб. наук. пр. – Харків : НТУ "ХПІ", 2020. – № 1. – С. 64-68.