Математическое и численное моделирование динамических процессов в виброударных машинах и обоснование их рациональных параметров
Дата
2016
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПИ"
Анотація
В работе исследовано явление ударного резонанса в виброударных системах. Исследованы околорезонансные режимы при различных значениях коэффициента вязкого трения. Исследован спектр собственных частот колебания корпуса виброударной машины. Проведен анализ динамических напряжений в металлоконструкции виброударной машины с учетом необходимости совместной отстройки от опасных режимов и обеспечения прочности и надёжности виброударной машины.
This paper is devoted to research of impact resonance effect in vibroimpact systems. To simplify the description of the vibroimpact system was used different models. The difference contained in number of bodies – from1 to 3. The equations of motion were formulated on the base of Newton laws. The impact interaction force is significantly nonlinear and can’t be linearized that’s why it’s presented as series of harmonics. Analytical and numerical methods were used to solve the equations of motion. Different program products like Maple, Cosmos Motion to obtain the numerical solution were used. The close to resonant modes and their particular qualities caused by variation of resilient friction are researched in paper. The eigenvalue frequencies spectrum of vibroimpact machine body was researched. The analysis of dynamical stress in vibroimpact machine body was done. This analysis was done with considering of mutual tuning out from dangerous modes and conditions of strength and reliability of vibroimpact machine. The additional criteria that have to tuning out the spectrum of eigenvalues from dangerous modes were proposed. The process of tuning out is connected with the area of variable parameters. That give possibility to determine influence from single and from group of parameters. Was detected that resonant modes are possible on the frequencies that are multiple to the frequency of external perturbation.
This paper is devoted to research of impact resonance effect in vibroimpact systems. To simplify the description of the vibroimpact system was used different models. The difference contained in number of bodies – from1 to 3. The equations of motion were formulated on the base of Newton laws. The impact interaction force is significantly nonlinear and can’t be linearized that’s why it’s presented as series of harmonics. Analytical and numerical methods were used to solve the equations of motion. Different program products like Maple, Cosmos Motion to obtain the numerical solution were used. The close to resonant modes and their particular qualities caused by variation of resilient friction are researched in paper. The eigenvalue frequencies spectrum of vibroimpact machine body was researched. The analysis of dynamical stress in vibroimpact machine body was done. This analysis was done with considering of mutual tuning out from dangerous modes and conditions of strength and reliability of vibroimpact machine. The additional criteria that have to tuning out the spectrum of eigenvalues from dangerous modes were proposed. The process of tuning out is connected with the area of variable parameters. That give possibility to determine influence from single and from group of parameters. Was detected that resonant modes are possible on the frequencies that are multiple to the frequency of external perturbation.
Опис
Ключові слова
резонанс, собственные частоты, напряженно-деформированное состояние, отстройка, метод конечных элементов, вязкое трение, stress-strain state, tuning out, finite element method
Бібліографічний опис
Математическое и численное моделирование динамических процессов в виброударных машинах и обоснование их рациональных параметров / И. В. Артемов [и др.] // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Сер. : Машинознавство та САПР. – Харків : НТУ "ХПІ", 2016. – № 39 (1211). – С. 3-26.