Кафедра "Інтегровані технології машинобудування ім. М. Ф. Семка"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/3115
Офіційний сайт кафедри http://web.kpi.kharkov.ua/cutting
Від 2005 року кафедра має назву "Інтегровані технології машинобудування" ім. М. Ф. Семка, попередня назва – "Різання матеріалів та різальні інструменти".
Кафедра заснована в 1885 році. Свої витоки вона веде від кафедри механічної технології (у подальшому – кафедра загального машинобудування, кафедра холодної обробки матеріалів, кафедра різання матеріалів та різальних інструментів).
Засновником і першим завідувачем кафедри був фундатор технологічної підготовки інженерів-механіків в ХТПІ Костянтин Олексійович Зворикін.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут і є провідним науково-дослідним і освітнім центром України в галузі високих інтегрованих технологій у машинобудуванні. У науковій школі кафедри різання матеріалів підготовлені 18 докторів технічних наук і 104 кандидата технічних наук.
У складі науково-педагогічного колективу кафедри працюють: 3 доктора технічних наук, 9 кандидатів технічних наук; 3 співробітника мають звання професора, 6 – доцента.
Переглянути
Результати пошуку
Документ Main technological factors determining the efficiency and quality of the vibration process(Національний технічний університет "Харківський політехнічний інститут", 2022) Mitsyk, A. V.; Fedorovich, V. A.; Grabchenko, A. I.The factors that determine the efficiency and quality of vibration treatment are indicated. Characteristic cases of interaction of abrasive granules with the processed surface are noted. The influence of the hardness of the processed part material and the shape of its surface, as well as the influence of chemically active solutions on the efficiency and quality of vibration processing, is substantiated. The characteristics of abrasive granules and their volume ratio with the processed parts are given. It is indicated that the underestimation of the possibilities of vibration processing technologies is explained by their insufficient studies. It has been established that vibration processing, depending on the characteristics and composition of the processing medium, is a mechanical or mechanochemical removal of the smallest particles of metal or its oxides and plastic deformation of microroughness due to mutual collisions of the medium granules with the processed surface, caused by vibrations of the reservoir in which the processing medium and, the processed parts are placed. It is noted that, according to the classification, vibration treatment refers to mechanical processing methods and, in particular, to the group of mechanical-chemical processing methods or to combined methods when chemically active solutions are introduced into the working medium, It is also noted that vibration treatment refers to dynamic, and for technological purposes – to dimensionless processing methods, according to the type of tool used - to the group of processing methods with a free abrasive. It has beene stablished that the efficiency of vibration processing depends on the oscillation modes of the vibrating machine, the mass of the processed parts and abrasive granules, the hardness of the parts material and the shape of their treated surfaces, the characteristics of the abrasive medium, the volume ratio of the parts and abrasive granules, as well as on the composition of the chemically active solution. The characteristic cases of interaction of abrasive granules with the processed surface are given. The situations of the highest processing productivity for performing the operations of vibration grinding, vibration polishing, washing and descaling have been established. It is noted how the hardness of the processed part and the shape of their surface affects the performance and quality of vibration processing operations. The characteristics of the working medium, which affects the efficiency and quality of vibration treatment, are given, including the influence of grain size and hardness of the material of abrasive granules. The volume ratios of abrasive and processed parts are considered. The types of actions on the vibration treatment processes are given.Документ Interaction of the abrasive medium with the treated surface and the process of metal removal during vibration treatment in the presence of a chemically active solution(Національний технічний університет "Харківський політехнічний інститут", 2021) Fedorovich, V. A.; Grabchenko, A. I.; Mitsyk, A. V.Interaction of working medium granules with the processed surface of the part is considered. It is noted that the processing methods are characterized by the dynamic interact ion of the abrasive medium with the processed surface. It is indicated that during vibration treatment there is an impact contact of the abrasive granule with the surface of the part, which leads to the formation of characteristic traces during the formation of the surface relief. The types of impact of abrasive grains of working medium granules on the surface of the processed part are identified. It is indicated that the effect of abrasive grains depends on the geometric parameters of the tops of the grains and the working contour of the granule as a whole. The alternation of the operation of abrasive grains in the connection with the nature of the motion of the granule over the surface of the part is shown. The interaction of surfaces of bodies during vibration treatment is considered. The distinctive features of the vibration treatment method from other analogs are indicated. The conditions for the formation of the surface layer of the part during vibration processing are given. The analysis of the mechani cal-physicochemical model of the micro-cutting process in the presence of a chemically active solution is carried out and a comparison of the intensity of technologies for vibration treatment of steel parts is given.Документ The effect of a shock wave in an oscillating working medium during vibration finishing-grinding processing(Національний технічний університет "Харківський політехнічний інститут", 2020) Mitsyk, A. V.; Fedorovich, V. A.; Grabchenko, A. I.The propagation of a force pulse in a working medium is considered as in a pseudo-gas, that is, the speed of sound. The movement of parts in the working medium is determined. The mechanism of the appearance of a weak shock wave, that is, a jump of the compaction in a pseudo-gas from abrasive granules is considered. The nature of the interaction of the surfaces of vibrating processed parts with granules of the working medium has been established. The characteristic of the Hugoniot adiabatic curve for pseudo-gas from granules of the working medium is given. The influence of the occurrence of a shock wave on the vibration treatment process is determined. The adequacy of theoretical and experimental studies has been established.Документ 3D methodology of research of diamond-abrasive machining process(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.Subsystem of computer-generated determination of conditions of manufacturing of defect-free diamond wheels and grinding of superhard materials on the base of 3D simulation of deflected mode of elements of the "SHM crystal grain – metal phase – grain – bond" system at process of diamond wheel sintering and grinding is developed.Документ Increase of efficiency of diamond grinding superhard of materials(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.The analysis of algorithm of expert system of process of diamond grinding superhard of materials (SHPM) is given. For realization of the offered expert system the ways of grinding with the combined control of parameters of a working surface of diamond circles are developed.The designed ways of superhard polycrystallic material diamond grinding basing on control of a grinding wheel surface with usage of simulation of destruction processes of the system "polycrysta-grain–wheel bond" considered.Документ Theoretical reasoning for efficient use of micro powders in diamond wheels on metallic bonds(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.The article presents theoretical researches of improving the manufacturing process and the subsequent using of grinding wheels from diamond micro powders of diamond on currentcarrying bonds, which allow to reduce the specific consumption of synthetic diamonds in the finishing operations of processing polycrystalline superhard materials It is proposed to use diamond grains with a metal coating in an abrasive tool. 3D analysis of the stress-strain state “diamond grain-coating-bond” system showed ways to reduce the probability of destruction of diamond grains during sintering of the diamond-carrying layer by changing the thickness of the coating, the elastic modulus of its material and other parameters. The calculated low values of the concentration of coated diamond grains provide a significant reduction in their specific consumption in the processing of polycrystalline superhard materials.Документ Specificity of using diamond micropowders in wheels on metallic bonds(Національний технічний університет "Харківський політехнічний інститут", 2019) Grabchenko, A. I.; Pyzhov, I.; Dobroskok, V. L.; Fedorovich, V. A.; Ostroverkh, Y.Some issues related to the possibility of increasing the efficiency of shaping blade tools from polycrystalline superhard materials by diamond grinding are considered. It has been established that one of the ways to increase the efficiency of using diamond micropowder grains in circles is to apply thick metal coatings on them. The use of embossed metal coatings on diamond grains can significantly extend their cutting resource. This is explained on the one hand by a stronger adhesion of the coating material to the diamond surface compared to the components of the binder, and on the other hand, a significant increase in the contact surface of the coated grain with the binder of the circle. It was established that the strength of metal and ceramic ligaments should be consistent with the strength of diamond grains sintered with it, and the concentration and graininess of the latter have a significant impact on the integrity of the grains in the sintered layer.Документ Improving the Design of Diamond Wheel for High-Speed Grinding(Nova Science Publishers, Inc., 2016) Mamalis, A. G.; Grabchenko, A. I.; Fedorovich, V. A.; Romashov, D. V.Grinding at high speeds is a complex process requiring specific tools for successful use. Rotational stresses during high-speed grinding can lead to failure if the wheel is not correctly designed. These results are extremely difficult to be obtained during a large number of field experiments due to the high cost of testing equipment. So, the article describes ways of improving the integrity of the body of the diamond grinding wheel for high-speed regimes using analytical approaches and finite element method.Документ Simulation of effects of metal phase in a diamond grain and bonding type on temperature in diamond grinding(Springer-Verlag London, 2012) Mamalis, A. G.; Grabchenko, A. I.; Fedorovich, V. A.; Kundrak, J.Manufacturing diamond wheels on various bonds is a relatively high-cost process, requiring high labour and high consumption of expensive diamond grains but yielding relatively low productivity. With better knowledge of the various factors involved in the sintering process, the most efficient combinations can be found, leading to higher productivity. Currently, there are no scientifically based recommendations for the choice of the rational combinations of strength, brand of grain, graininess and concentration with the physical–mechanical properties of bonds. The aim of this research is the development of a technique for the theoretical definition of an optimal combination of strength properties of diamond grains and bond to provide maximum retention of diamond grain integrity during the process of diamond wheel manufacture. This is investigated using 3D simulations of the deflected mode of the sintering area of the wheel's diamond bearing layer.Документ Mathematical simulation of motion of working medium at finishing-grinding treatment in the oscillating reservoir(Springer-Verlag London, 2014) Mamalis, A. G.; Grabchenko, A. I.; Mitsyk, A. V.; Fedorovich, V. A.; Kundrak, J.The results of mathematical simulation have been carried out for the pattern of working medium motion providing the technological process of finishing–grinding treatment in an oscillating reservoir. With use of physics laws, it is ascertained and grounded that the flow of granules at the plane wall of reservoir is travelling oppositely to the source of vibrations, whereas the granules are drifting on the cycloid–trochoid trajectories from the wall of reservoir, where the looped displacement is maximal, to the center of reservoir in which the shift of granules is reduced to minimum because of damping and dissipation effect. The received theoretical regulations have a fundamental nature and can be used at the account of technological parameters of designed vibration machines.