Кафедра "Інтернет речей"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5398

Увага! Поповнення колекції кафедри "Інтернет речей" – призупинено.

Від вересня 2022 року кафедри "Інтернет речей" та "Мультимедійних інформаційних технологій і систем" об’єднані у кафедру "Мультимедійні та інтернет технології і системи".

Первісна назва кафедри – "Розподілені інформаційні системи і хмарні технології".

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Control of a Conveyor Based on a Neural Network
    (Institute of Electrical and Electronics Engineers, Inc., USA, 2020) Pihnastyi, O. M.; Kozhevnikov, G. K.
    The present study is devoted to the design of the main flow parameters of a conveyor control system with a large number of sections. For the design of the control system, a neural network is used. The architecture of the neural network is justified and the rules for the formation of nodes for the input and output layers are defined. The main parameters of the model are identified and analyzed. The data set for training the neural network is formed using the analytical model of the transport system. The criterion for the quality of the transport system is written. For the given criterion for the quality of the transport system, the Pontryagin function is defined and the adjoint system of equations is given. It allows calculating optimal control of the transport system. For calculation is used additional model of the transport system with output nodes which are controls. A graphical representation of the results of the study is given.
  • Ескіз
    Документ
    Conveyor Model with Input and Output Accumulating Bunker
    (Institute of Electrical and Electronics Engineers, Inc., USA, 2020) Pihnastyi, O. M.; Kozhevnikov, G. K.; Khodusov, V. D.
    In this article, a model of a conveyor-type transport system with an input and output bunker is developed. The transport conveyor is presented in the form of a dynamic distributed system. It is shown that the material flow is proportional to the linear density of material distribution along the transport route. The coefficient of proportionality is the speed of the belt. When constructing the model, the assumption of the absence of oscillatory processes associated with the tension of the conveyor belt is introduced, which corresponds to the case when the function determining the speed of the belt is only a function of time. A solution is given, that determines the state of the flow parameters of the conveyor section for a given point of the transport route at an arbitrary point in time. It is shown that the state of the flow parameters for an arbitrary place in the transport route is determined by the state of the flow parameters at the input of the conveyor section, considering the transport delay. An expression is written that allows to calculate the amount of transport delay. The relationship of the transport delay value with the algorithm for controlling the conveyor belt speed is demonstrated. A system of equations for the model of a conveyor-type transport system with an input and output bunker is obtained. The behavior of the model for several characteristic cases of the functioning of the transport system is analyzed. The constructed model of the control object can be used to design highly efficient control systems for the flow parameters of the transport system with an input and an output bunker.