Кафедра "Інтернет речей"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5398
Увага! Поповнення колекції кафедри "Інтернет речей" – призупинено.
Від вересня 2022 року кафедри "Інтернет речей" та "Мультимедійних інформаційних технологій і систем" об’єднані у кафедру "Мультимедійні та інтернет технології і системи".
Первісна назва кафедри – "Розподілені інформаційні системи і хмарні технології".
Переглянути
4 результатів
Результати пошуку
Документ Analysis of the input material flow of the transport conveyor(Національний гірничий університет, 2023) Pihnastyi, O. M.; Sobol, MaksymPurpose. To develop a method for analyzing the material flw entering the input of a conveyor section, based on the decomposition of the input material flw into a deterministic material flw and a stochastic material flw. Methodology. The analysis of experimental data characterizing the input material flw was performed using the methods of the canonical Fourier representation of a random process. Findings. A method for representing a stochastic material flw as a combination of a deterministic process and a stationary random process with ergodic properties is proposed. Originality. The originality of the obtained results lies in the fact that, for the fist time, a method of analysis based on the decomposition of the input material flw for a conveyor section has been proposed, which, unlike the existing methods of input flw typing for the mining industry, will allow us to independently perform deterministic flw typing and stochastic material flw typing in transport conveyors. The proposed approach makes it possible to highlight special characteristics separately for deterministic and stochastic material flws. This will make it possible to use the obtained regularities to increase the accuracy of the conveyor model and will accordingly increase the quality of the belt speed control systems and the flw of material coming from the input bunker. The obtained results are of particular importance due to the fact that the characteristics of the deterministic material flw are directly related to the technical or technological factors of material extraction. Practical value. The obtained results allow determining statistically stable regularities for the incoming flw, which makes it possible, based on these regularities from the set of available control algorithms, to choose the optimal control algorithm for the parameters of the operating conveyor section. This allows reducing the enterprise’s energy costs of the transportation of material. The proposed method can be successfully applied to build random number generators simulating the sequence of values of the input flw of material. The developed generators can be used both for validating existing belt speed control systems and creating new control systems based on neural networks. This opens perspectives for the design of effctive systems for controlling the flw parameters of transport system, based on the transport conveyor model, which takes into account the stochastic nature of the incoming material flw.Документ Use of analytical model for synthesis of algorithms for control of transport conveyor parameters(Khmelnytskyi national university, 2022) Pihnastyi, O. M.; Sobol, MaksymThis study presents a methodology for synthesizing optimal control algorithms for the flow parameters of a conveyor-type transport system with a variable transport delay. A multi-section transport conveyor is a complex dynamic system with a variable transport delay. The transport conveyor is an important element of the production system, used to synchronize technological operations and move material. The Analytical PiKh-model of the conveyor section was used as a model for designing a control system for flow parameters. The characteristic dimensionless parameters of the conveyor section are introduced and the similarity criteria for the conveyor sections are determined. The model of a conveyor section in a dimensionless form is used to develop a methodology for synthesizing algorithms for optimal control of the flow parameters of a transport conveyor section. The dependencies between the value of the input and output material flow of the section are determined, taking into account the initial distribution of the material along the conveyor section, variable transport delay, restrictions on the specific density of the material, and restrictions on the speed of the belt. The dependencies between the value of the input and output material flow for the case of a constant transport delay are analyzed. A technique for synthesizing algorithms for optimal belt speed control based on the PiKh-model of a conveyor section is presented. As a simplification, a two-stage belt speed control is considered. Particular attention is paid to the methodology for synthesizing optimal control algorithms based on the energy management methodology (TOU-Tariffs). The criteria of control quality are introduced and problems of optimal control of flow parameters of the transport system are formulated. Taking into account differential connections and restrictions on phase variables and admissible controls, which are typical for the conveyor section, the Pontryagin function and the adjoint system of equations are written. As examples demonstrating the design of optimal control, algorithms for optimal control of the flow parameters of the transport system are synthesized and analysis of optimal controls is performed.Документ Застосування технологій IoT у комунальному господарстві(ТОВ "Планета-Прінт", 2021) Карпенко, Вячеслав ВасильовичДокумент Control of the belt speed at unbalanced loading of the conveyor(Національний технічний університет "Дніпровська політехніка", 2019) Pihnastyi, O. M.Purpose. Development of algorithms for controlling the speed of the conveyor belt, based on the distributed model of the transport system, containing partial differential equations Methodology. To calculate the parameters of a conveyor line with a variable speed of material motion, an instrument of mathematical physics is used. Findings. Comparative analysis of conveyor transport system models is performed. Application of partial differential equations for simulating transport systems of conveyor type, which are complex dynamic distributed systems, is substantiated. A non-dimensional model of a conveyor system in instantaneous approximation with the use of partial-derivative equations is presented. A system of characteristic equations is recorded and a solution is developed which defines the value of material flow and material density at an arbitrary point of time for the given point of the transportation route. An expression is obtained which defines the value of material delay in the transport system depending on the velocity defect law for conveyor belt movement. Transition period time is determined during which the output material flow is defined by linear density of material disposition along the transportation route. Dependences for the material linear density and material flow for the steady state condition are defined. The performance criterion of control of flow parameters of the conveyor system is recorded and a solution of the problem of optimal control of conveyor belt speed providing the relay control mode with the minimum power consumption for material movement is found. An example of control algorithm development is given. Originality. PDE-models of transport systems of conveyor type and energy-saving algorithms for controlling such systems have been improved. Practical value. The proposed method for calculating the parameters of the conveyor line, which is a dynamic distributed system, can be used to design systems for optimal control of flow parameters of transport systems of conveyor type.