Кафедра "Інтернет речей"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5398

Увага! Поповнення колекції кафедри "Інтернет речей" – призупинено.

Від вересня 2022 року кафедри "Інтернет речей" та "Мультимедійних інформаційних технологій і систем" об’єднані у кафедру "Мультимедійні та інтернет технології і системи".

Первісна назва кафедри – "Розподілені інформаційні системи і хмарні технології".

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Improving the Prediction Quality for a Multi-Section Transport Conveyor Model Based on a Neural Network
    (2022) Pihnastyi, O. M.; Ivanovska, O. V.
    The multi-section transport conveyor model based on the neural network for predicting the output flow parameters is considered. The expediency of using sequential and batch modes of training of a neural network in a model of a multi-section transport conveyor has been investigated. The quality сriterion of predicting the output flow parameters of the transport system is written. Comparative analysis of sequential and batch modes of neural network training is carried out. The convergence of the neural network training process for different sizes of the training batch is studied. The effect of the batch size on the convergence rate of the neural network learning process is estimated. The results of predicting the output flow parameters of a multi-section transport system for models based on a neural network that was learned using training batches of different sizes are presented. A nonlinear relationship between the batch size and the convergence rate of the neural network learning process is demonstrated. The recommendations are given on the choice of learning modes for a neural network in the model of a multi-section transport conveyor. The choice of the initialization value of the node participating in the formation of the bias value is investigated. The qualitative regularities characterizing the influence of the choice of the node initialization value on the forecasting accuracy of the output flow parameters of the transport system are studied.
  • Ескіз
    Документ
    Analysis of Dynamic Stresses during Acceleration and Deceleration of a Conveyor Belt (Maxwell Element Model)
    (2021) Pihnastyi, O. M.; Kozhevnikov, G. K.; Vasyuchenko, Pavel
    The wave equation which allows researching the occurrence and the dynamic stress propagation in the conveyor belt is obtained for the conveyor belt, the material of which corresponds to the Maxwell element model. The boundary and initial conditions were written for power switching modes to consider the mechanical characteristics of the asynchronous engine with the phase rotor, which determine the dependencies between the traction torque and the rotational speed of an asynchronous electric engine with a phase rotor. The estimate is given to separate wave equation terms. The expression is obtained for the calculation propagation belt speed of the dynamic stress along the conveyor belt. The conditions are shown by which the wave equation will correspond to the model of Hooke’s element. By designing the dependencies between the traction torque and the rotational speed for a specified interval of the mechanical characteristic, the linear approximation is used. It is shown that the change of the material flow value coming into a section input doesn’t render a special influence on the dynamic stresses propagation process along the conveyor belt. The expressions are obtained for the dynamic stress propagation speed calculation. By deriving the wave equation it is assumed the uneven material distribution along the conveyor section.
  • Ескіз
    Документ
    Maxwell-Element Model for Describing Conveyor Belt Stresses
    (2021) Pihnastyi, O. M.; Kozhevnikov, G. K.; Ivanovska, O. V.
    The wave equation which allows researching the occurrence and the dynamic stress propagation in the conveyor belt is obtained for the conveyor belt, the material of which corresponds to the Maxwell element model. The boundary and initial conditions were written for power switching modes to consider the mechanical characteristics of the asynchronous engine with the phase rotor, which determine the dependencies between the traction torque and the rotational speed of an asynchronous electric engine with a phase rotor. The estimate is given to separate wave equation terms. The expression is obtained for the calculation propagation belt speed of the dynamic stress along the conveyor belt. The conditions are shown by which the wave equation will correspond to the model of Hooke’s element. By designing the dependencies between the traction torque and the rotational speed for a specified interval of the mechanical characteristic, linear approximation is used. It is shown that the change of the material flow value coming into a section input doesn’t render a special influence on the dynamic stresses' propagation process along the conveyor belt. The expressions are obtained for dynamic stress propagation speed calculation. By deriving the wave equation, it is assumed the uneven material distribution along the conveyor section
  • Ескіз
    Документ
    The dynamic model of conveyor belt stresses
    (2020) Khodusov, V. D.; Pihnastyi, O. M.; Kozhevnikov, G. K.
    The article considers the causes of dynamic stress when moving a conveyor belt with a material. The main factors of the occurrence of the dynamic resistance in the conveyor system are defined. It is demonstrated what the propagation speed of perturbations substantially depends on the loading level of the conveyor system with the material. When constructing a model of dynamic stresses, Hooke's law was used, which is an accurate approximation for most sol-id bodies, as long as the forces and deformations are small enough. The main attention in the article is given to the causes of dynamic stresses at the start of the conveyor system. When calculating the deformations, the inertia forces of the moving material and tape are taken into account. The analysis of the appearance of dynamic stresses at a constant value of the conveyor belt acceleration and the linear nature of the change in the value of the conveyor belt acceleration was carried out.