Вісник № 02. Системний аналіз, управління та інформаційні технології
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/55880
Переглянути
16 результатів
Результати пошуку
Документ Topic segmentation methods comparison on computer science texts(Національний технічний університет "Харківський політехнічний інститут", 2021) Sokol, Volodymyr Yevhenovych; Krykun, Vitalii Oleksandrovich; Bilova, Mariia Oleksiivna; Perepelytsya, Ivan Dmytrovich; Pustovarov, Volodymyr VolodymyrovichThe demand for the creation of information systems that simplifies and accelerates work has greatly increased in the context of the rapid informatization of society and all its branches. It provokes the emergence of more and more companies involved in the development of software products and information systems in general. In order to ensure the systematization, processing and use of this knowledge, knowledge management systems are used. One of the main tasks of IT companies is continuous training of personnel. This requires export of the content from the company's knowledge management system to the learning management system. The main goal of the research is to choose an algorithm that allows solving the problem of marking up the text of articles close to those used in knowledge management systems of IT companies. To achieve this goal, it is necessary to compare various topic segmentation methods on a dataset with a computer science texts. Inspec is one such dataset used for keyword ext raction and in this research it has been adapted to the structure of the datasets used for the topic segmentation problem. The TextTi ling and TextSeg methods were used for comparison on some well-known data science metrics and specific metrics that relate to the topic segmentation problem. A new generalized metric was also introduced to compare the results for the topic segmentation problem. All software implementations of the algorithms were written in Python programming language and represent a set of interrelated functions. Results were obtained showing the advantages of the Text Seg method in comparison with TextTiling when compared using classical data science metrics and special metrics developed for the topic segmentation task. From all the metrics, including the introduced one it can be concluded that the TextSeg algorithm performs better than the TextTiling algorithm on the adapted Inspec test data set.Документ Software testing results analysis for the requirements conformity using neural networks(Національний технічний університет "Харківський політехнічний інститут", 2021) Shepeliev, Oleksandr Vadymovich; Bilova, Mariia OleksiivnaThe relevance of scientific work lies in the need to improve existing software designed to analyze the compliance of the results of software testing of the stated requirements. For the implementation of this goal, neural networks can be used by quality control specialists to m ake decisions about software quality, or project managers as an expert system, for one of the quality indicators for the customer. The article deals with software testing which is a process of validation and verification of compliance of the software application or business program with the technical requirements that guided its design and development, and work as expected, and identifies important errors or deficiencies classified by the severity of the program to be fixed. Existing systems do not provide for or have only partial integration of systems of work with the analysis of requirements, which should ensure the formation of expert assessment and provide an opportunity to justify the quality of the software product. Thus, a data processing model based on a fuzzy neural network was proposed. An approach to allow determining the compliance of the developed software with functional and non-functional requirements was proposed, taking into account how successfully or unsuccessfully implemented this or that requir ement. The ultimate goal of scientific work is the development of algorithmic software analysis of compliance of software testing results to stated requirements for support in the decisions taken. The following tasks are solved in scientific work: analysis of advantages and disadvantages of using existing systems when working with requirements; definition of general structure and classification of testing and requirements; characteristic main features of the use of neural networks; designing architecture, the module of research of conformity of results of testing software to the stated requirements.Документ Застосування методів штучного інтелекту для апроксимації механічної поведінки гумоподібних матеріалів(Національний технічний університет "Харківський політехнічний інститут", 2021) Погребняк, Сергій Віталійович; Водка, Олексій ОлександровичУ ХХІ сторіччі нейронні мережі широко використовуються в різних сферах, в тому числі в комп’ютерному моделюванні і в механіці. Така популярність через те, що вони дають високу точність, швидко працюють та мають дуже широкий спектр налаштувань. Мета роботи створення програмного продукту з використанням елементів штучного інтелекту, для інтерполяції та апроксимації експериментальних даних. Програмне забезпечення повинно коректно працювати, та давати результати з мінімальною похибкою. Недоліком використання математичних підходів до обчислення та прогнозування петель гістерезису є те шо вони досить погано описують розвантаження, таким чином отримуємо не коректні данні для розрахунків напружено-деформованого стану конструкції. Інструментом вирішення було використання елементів штучного інтелекту, а точніше нейронних мереж прямого поширення. В роботі збудована та навчена нейронна мережа прямого поширення. Вона була навчена вчителем (вчитель з використанням метода зворотного розповсюдження похибки) на основі навчаючої вибірки попередньо проведеного експерименту. Для тестування було побудовано декілька мереж різної структури, які отримували на вхід однаковий набір даних який не використовувався при навчанні, але був відомий з експерименту, таким чином була знайдена похибка мережі за кількістю виділеної енергії та за середньо-квадратичним відхиленням. У статті детально описується математична інтерпретація нейронних мереж, спосіб їх навчання, попередньо проведений експеримент, архітектура мережі та її топологія, метод навчання, підготовки навчаючої вибірки та вибірки тестування. В результаті проведеної роботи було збудоване та протестоване програмне забезпечення в якому використовувалась штучна нейронної мережа, було побудовано та протестоване декілька типів нейронних мереж з різними вхідними даними та внутрішніми структурами, визначені їх похибки, сформовані позитивні та негативні якості мереж які використовувались.Документ Estimating with a given accuracy of the coefficients at nonlinear terms of univariate polynomial regression using a small number of tests in an arbitrary limited active experiment(Національний технічний університет "Харківський політехнічний інститут", 2021) Pavlov, Alexander AnatolievichWe substantiate the structure of the efficient numerical axis segment an active experiment on which allows finding estimates of the coefficients for nonlinear terms of univariate polynomial regression with high accuracy using normalized orthogonal Forsyth polynomials with a sufficiently small number of experiments. For the case when an active experiment can be executed on a numerical axis segment that does not satisfy these conditions, we substantiate the possibility of conducting a virtual active experiment on an efficient interval of the numerical axis. According to the results of the experiment, we find estimates for nonlinear terms of the univariate polynomial regression under research as a solution of a linear equalities system with an upper non-degenerate triangular matrix of constraints. Thus, to solve the problem of estimating the coefficients for nonlinear ter ms of univariate polynomial regression, it is necessary to choose an efficient interval of the numerical axis, set the minimum required number of values of the scalar variable which belong to this segment and guarantee a given value of the variance of estimates for nonlinear terms of univariate polynomial regression using normalized orthogonal polynomials of Forsythe. Next, it is necessary to find with sufficient accuracy all the coefficients of the normalized orthogonal polynomials of Forsythe for the given values of the scalar variable. The resulting set of normalized orthogonal polynomials of Forsythe al-lows us to estimate with a given accuracy the coefficients of nonlinear terms of univariate polynomial regression in an arbitrary limited active experiment: the range of the scalar variable values can be an arbitrary segment of the numerical axis. We propose to find an estimate of the constant and of the coefficient at the linear term of univariate polynomial regression by solving the linear univariate regression problem using ordinary least squares method in active experiment conditions. Author and his students shown in previous publications that the estimation of the coefficients for nonlinear terms of multivariate polynomial regression is reduced to the sequential construction of univariate regressions and the solution of the corresponding systems of linear equalities. Thus, the results of the paper qualitatively increase the efficiency of finding estimates of the coefficients for nonlinear terms of multivariate polynomial regression given by a redundant representation.Документ Metrics of virtual promotion of a product(Національний технічний університет "Харківський політехнічний інститут", 2021) Orekhov, Sergey Valerievich; Malyhon, Hennadiy VasilievichAn approach to the mathematical description of the criterion for the effectiveness of a new object of research – virtual promotion is presented in the paper. The emergence of this new object of research is connected, on the one hand, with the classical theory of marketing, and on the other with modern Internet technologies. Marketing is based on the 4P principle: product, price, location and promotion. Promotion is a component of this principle. But in modern conditions, this phenomenon is changing under the influence of the Internet. Now this 4P component is becoming a fully virtual instrument. The traditional scheme of promotion functioning is as follows. A message is created to a potential buyer and the delivery channel of this message undergoes a change. It is based on the principle: money – goods – money. While the new sales scheme is described by the scheme: we attract a client, make money on a client, we spend money. In the new scheme, we deal with product knowledge in the form of the so-called semantic core of web content. Knowledge describes for a potential client how a given product can cover his need for something. Using the logistic principles of the transfer of goods, this semantic core is loaded into the specified Internet nodes. That is, virtual promotion is formed as two channels: logistics and marketing. The first one performs three operations: concentration, formatting and distribution of semantic cores on the Internet. The second manages this process, forming a virtual promotion map. This map is a graph of Internet nodes. It is required to define such a tree of Internet nodes so that virtual promotion has maximum efficiency. The paper analyzes modern metrics related to the processes of search engine optimization on the Internet. Unfortunately, these metrics evaluate only statistically after the fact of visiting a web resource or the budget of the Internet site in which the advertising message about the product was placed. Therefore, based on the conversion metric, a criterion for the effectiveness of virtual promotion was proposed in the work, which takes into account both the attractiveness of the semantic core and the attractiveness of the Int ernet site where the semantic core will be located. The criterion reflects the income that we receive depending on the attractiveness of the semantic kernel and the Internet site.Документ Моделювання розвитку епідемії на основі інформаційної технології оптимізації(Національний технічний університет "Харківський політехнічний інститут", 2021) Нікуліна, Олена Миколаївна; Северин, Валерій Петрович; Надуєва, Марія Олексівна; Бубнов, Антон ІгоровичРозроблені та досліджені математичні моделі епідемії для прогнозу розвитку епідемії коронавірусу COVID-19 на основі інформаційної технології оптимізації складних динамічних систем. Розглянуті математичні моделі епідемій SIR, SIRS, SEIR, SIS, MSEIR у вигляді нелінійних систем диференціальних рівнянь та проведено аналіз використання математичних моделей для дослідження розвитку епідемії коронавірусу COVID-19. На основі статистичних даних епідемії коронавірусу COVID-19 у Харківської області обчислені початкові значення параметрів моделей останньої хвилі епідемії. З використанням цих моделей програмою системного методу першого ступеня з модуля методів інтегрування інформаційної технології для розв’язання нелінійних систем диференціальних рівнянь проведено імітаційне моделювання процесів розвитку останньої хвилі епідемії. Імітаційне моделювання показує, що кількість здорових людей буде зменшуватись, а кількість інфікованих людей буде зростати. За 12 місяців кількість інфікованих людей досягне свого максимуму, а потім почне зменшуватись. Інформаційною технологією оптимізації динамічних систем виконана ідентифікація параметрів моделей епідемії COVID-19 на основі статистичних даних захворювань у Харківської області. З використанням отриманих моделей проведено прогнозування розвитку останньої хвилі епідемії COVID-19 у Харківської області. Наведено процеси розвитку епідемії за SIR-моделлю з імунітетом, що слабшає, зі значеннями параметрів моделі, отриманих в результаті ідентифікації. Приблизно за 13 місяців від початку хвилі епідемії кількість інфікованих людей досягне свого максимуму, а потім почне зменшуватись. За 10 місяців все населення Харківської області буде інфіковано. Ці результати дозволять передбачити можливі варіанти розвитку епідемії коронавірусу COVID-19 у Харківської області для вчасного проведення адекватних протиепідемічних заходів.Документ Динамика электронного пучка формируемого магнетронной пушкой с вторично-эмиссионным катодом, в спадающем магнитном поле соленоида: эксперимент и моделирование(Національний технічний університет "Харківський політехнічний інститут", 2021) Мазманишвили, Александр Сергеевич; Решетняк, Николай Григорьевич; Сидоренко, Анна ЮрьевнаВ данной работе представлены результаты экспериментальных исследований и расчетов по формированию радиального электронного пучка магнетронной пушкой с вторично-эмиссионным катодом в диапазоне энергий электронов 35…65 кэВ и измерению его параметров при транспортировке в суммарном спадающем магнитном поле соленоида и поля рассеяния постоянных магнитов. Транспортировка пучка осуществлялась в системе, состоящей из медных колец с внутренним диаметром 66 мм, находящейся на расстоянии 85 мм от среза магнетронной пушки. Изучена зависимость тока пучка от амплитуды и градиента спада поля. Проведенные исследования показали возможность формирования радиального электронного пучка с энергией в десятки килоэлектронвольт в спадающем магнитном поле соленоида. Оптимизацией распределения магнитного поля (создаваемого соленоидом и кольцевыми магнитами) и его градиента спада можно добиться увеличения попадания электронов на одно кольцо (до ~72 % тока пучка). На основе математической модели движения электронного потока синтезировано программное средство, позволяющее получать и интерпретировать характеристики результирующих потоков. Полученные численные зависимости удовлетворительно согласуются с экспериментальными результатами для магнитного поля с большим градиентом спада. Рассмотрены различные конфигурации магнитного поля. Получены решения прямой задачи моделирования траекторий электронов для заданных начальных условий и параметров. Рассмотрены различные конфигурации магнитного поля. Показано, что для выбранных начальных условий для пучка электронов и распределений продольного магнитного поля вдоль оси пушки и канала транспортировки поток электронов попадает на вертикальный участок, длина которого порядка миллиметра. Таким образом, изменяя амплитуду и распределение магнитного поля, можно регулировать ток в радиальном направлении вдоль длины трубы, и, следовательно, место электронного облучения.Документ Using of multilayer neural networks for the solving systems of differential equations(Національний технічний університет "Харківський політехнічний інститут", 2021) Marchenko, Natalia Andriyivna; Sydorenko, Ganna Yurijivna; Rudenko, Roman OleksandrovychThe article considers the study of methods for numerical solution of systems of differential equations using neural networks. To achieve this goal, the following interdependent tasks were solved: an overview of industries that need to solve systems of differential equations, a s well as implemented a method of solving systems of differential equations using neural networks. It is shown that different types of systems of differential equations can be solved by a single method, which requires only the problem of loss function for optimization, which is directly created from differential equations and does not require solving equations for the highest derivative. The solution of differential equations’ system using a multilayer neural networks is the functions given in analytical form, which can be differentiated or integrated analytically. In the course of this work, an improved form of construction of a test solution of systems of differential equations was found, which satisfies the initial conditions for construction, but has less impact on the solution error at a distance from the initial conditions compared to the form of such solution. The way has also been found to modify the calculation of the loss function for cases when the solution process stops at the local minimum, which will be caused by the high dependence of the subsequent values of the functions on the accuracy of finding the previous values. Among the results, it can be noted that the solution of differential equations’ system using artificial neural networks may be more accurate than classical numerical methods for solving differential equations, but usually takes much longer to achieve similar results on small problems. The main advantage of using neural networks to solve differential equations` system is that the solution is in analytical form and can be found not only for individual values of parameters of equations, but also for a ll values of parameters in a limited range of values.Документ Human body modeling technologies for e-commerce systems(Національний технічний університет "Харківський політехнічний інститут", 2021) Litvinov, Bogdan Ruslanovich; Bilova, Mariia OleksiivnaRelevance of the research work is the analysis of the main features of 3D modeling for further implementation in e-commerce. Namely, the features of creating a human body 3D model with the ability to edit personal settings of individual parts of the body, as well as a basic set of clothes to provide a more realistic representation of the model. The features of the 3D model in general were considered in this article. The mathematical analysis of the 3D graphics rendering on the 2D monitor and the possibilities of control and editing of such models have been presented. The developed software product allows the user to create an anatomical three-dimensional model of the human body and then adjust it to his needs. The user can apply on created model variety of settings, namely more than 15 different views, with a full package of changes. It is possible to change the size, color of hair, eyebrows, eyes, face, body, legs. Also, the user is able to select the levels of skeletal frame views and additionally can select different backgrounds to provide a more realistic representation of the model in space. Additional functionality was implemented for more flexible configuration of the model’sface. The user can pre-determine points to select directions or sizes of different parts of the face using settings, displayed on the mouse or touchpad control. After adjustments, the user is able to manage the clothes that he had saved in the shopping cart from the online store, from which he later proceeded to the online fitting. After the fitting the user can test the creation of animations in 360 degrees of free movement. Finally, the user can go to the store to pay for the items he left in the shopping cart. Developed software allows improving main metrics of the on-line stores, which has a positive impact on increasing the growth of earnings.Документ Determine recommendation systems to search for books by preferences of web users(Національний технічний університет "Харківський політехнічний інститут", 2021) Kozulia, Mariia Mykhailovna; Sushko, Vladislava VladimirovnaCurrently, the question of state, formation and development of the information source interaction system, the scientific interac tion and users' requests in certain fields of activity remains relevant under the conditions of the development of the use of Internet services. Recommendation systems are one of the types of artificial intelligence technologies for predicting parameters and capabilities. Due to the rapid increase in data on the Internet, it is becoming more difficult to find something really useful. And the recommendations offered by the service itself may not always correspond to the user's preferences. The relevance of the topic is to develop a personal recom mendation system for searching books, which will not only reduce time and amount of unnecessary information, but also meet the user's preferences based on the analysis of their assessments and be able to provide the necessary information at the right time. All this makes resources based on refer ral mechanisms attractive to the user. Such a system of recommendations will be of interest to producers and sellers of books, because it is an opportunity to provide personal recommendations to customers according to their preferences. The paper considers algorithms for providing recommender systems (collaborative and content filtering systems) and their disadvantages. Combinations of these algorithms using a hybrid algorithm are also described. It is proposed to use a method that combines several hybrids in one system and consists of two elements: switching and feature strengthening. This made it possible to avoid problems arising from the use of each of the algorithms separately. A literature web application was developed using Python using the Django and Bootstrap frameworks, as well as SQLite databases, and a system of recommendations was implemented to provide the most accurate suggestion. During the testing of the developed software, the wo rk of the literature service was checked, which calculates personal recommendations for users using the method of hybrid filtering. The recommendation system was tested successfully and showed high efficiency.