2023 № 2 Системний аналіз, управління та інформаційні технології
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/72511
Переглянути
Документ Про один клас нестаціонарних кривих в гільбертовому просторі(Національний технічний університет "Харківський політехнічний інститут", 2023) Боєва, Анна АнатоліївнаСтаціонарні випадкові процеси достатньо добре вивчалися протягом останніх років, починаючи з робіт А. Н. Колмогорова. Можливість побудування кореляційної теорії нестаціонарних випадкових процесів розглядалася в монографіях М. С. Ліфшіца, А. А. Янцевича, В. А. Золотарьова. Деякі класи нестаціонарних кривих досліджувалися В. Е. Кацнельсоном та ін. В даній роботі розглядалися нестаціонарні випадкові процеси як криві, які "слабо відхиляються" від випадкових процесів з кореляційною функцією спеціального вигляду. Вводиться інфінітезимальна кореляційна функція, яка за змістом є відхилення від випадкового процесу з даною кореляційною функцією. В роботі розглядаються нестаціонарні випадкові процеси у випадку, коли оператор процесу має одновимірну уявну компоненту, і коли оператор є дисипативним з дискретним спектром. Показано, що нестаціонарність випадкового процесу тісно пов'язана з відхиленням оператора від свого спряженого. Використовуючи трикутну і універсальну моделі несамоспряжених операторів, можна отримати представлення для кореляційної функції у випадку нестаціонарного випадкового процесу, яке замінює представлення Бохнера – Хінчина у випадку стаціонарних випадкових процесів. Отримано вираз для інфінітезимальної функції для різних випадків спектра (дискретний спектр, розташований в верхній напівплощині, і безконтрастний спектр в нулі). Для випадку оператора з дискретним спектром інфінітезимальна функція може бути знайдена через спеціальну лямбда-функцію. Для лебегового простору комплекснозначних інтегровних з квадратом функцій отримано вираз для інфінітезимальної функції через спеціальну модіфіковану функцію Бесселя нульового порядку. Показано, що аналогічний підхід можна використовувати для еволюційно представимих послідовностей в гільбертовому просторі.