Кафедра "Двигуни та гібридні енергетичні установки"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/54

Офіційний сайт кафедри http://web.kpi.kharkov.ua/diesel/glavnaya

Від 2022 року кафедра має назву "Двигуни та гібридні енергетичні установки", первісна назва – "Двигуни внутрішнього сгоряння".

Кафедра "Двигуни внутрішнього згоряння" (ДВЗ) заснована 9 липня 1930 року у Харківському Механіко машинобудівному інституті. Читання курсів по ДВЗ розпочали на механічному факультеті ще в 1910 році, дисципліну "ДВЗ" і проєктування ДВЗ протягом 1910-1913 рр. читав граф Сергій Йосипович Доррер. Спеціальність "ДВЗ" у Харківському технологічному інституті була організована в 1918 році. У її джерел, а пізніше й кафедри ДВЗ стояв Василь Трохимович Цвєтков (1887–1954).

Від 1980 року вона є базовою серед українських закладів вищої освіти з моторобудування. За час існування кафедра підготувала понад 4000 випускників. Сьогодні на кафедрі навчається понад 200 студентів. Обсяг ліцензійного набору є одним з найбільших в університеті.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 6 кандидатів технічних наук; 2 співробітника мають звання професора, 5 – доцента. Серед викладачів кафедри 3 лауреата Державної премії України, 2 лауреата премії Кабінету міністрів. Від 2001 року по 2016 рік кафедру очолював Заслужений діяч науки і техніки України, лауреат Нагороди Ярослава Мудрого Академії наук Вищої школи України, Лауреат державної премії в галузі науки і техніки 2008 року, професор, доктор технічних наук, проректор університету з наукової роботи – Андрій Петрович Марченко.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Моделювання роботи автоматизованої системи локального багатоконтурного охолодження деталей автотракторного дизеля
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Триньов, Олександр Володимирович; Сівих, Дмитро Георгійович
    Представлені результати проміжного етапу дослідження теплового стану окремих теплонапружених деталей та вузлів форсованого автотракторного дизеля за умов їх локального повітряного охолодження (ЛПО), яке регулюється в автоматичному режимі. Розглядаються і оцінюються можливості практичної реалізації на основі мікропроцесорних систем керування багатоконтурного локального охолодження деталей клапанного випускного вузла, підшипникового вузла турбокомпресора, при необхідності, додаткового охоло-дження повітрям верхньої частини блоків циліндрів в зоні розміщення циліндрових гільз. Перелічені деталі, як засвідчують результати багатьох моторних випробувань, відрізняються значеннями максимальних кри-тичних температур, що в свою чергу залежать від протікання теплообмінних процесів у відповідних спряженнях, вузлах. При цьому, в умовах експлуатації з використанням системи ЛПО на дизелі виникають додаткові проблеми, пов'язані з ускладненням алгоритму керування охолодженням, необхідністю переходу саме до багатоконтурних варіантів зі своїми значеннями критичних температур і необхідними витратами охолоджуючого повітря. На даному етапі дослідження було проведено перевірку в тестовому режимі алгоритму керування подачею і відключенням подачі охолоджувача, відповідних схемних рішень для його реалізації. В безмоторному експерименті були використані раніше спеціально розроблені та препаровані термопарами вузли, які підігрівалися окремо до заданих тестових температур, а також вузол серійного виробництва, який входить до складу газобалонного обладнання (ГБО) 4-го покоління сучасних двигунів. Вузол складається з чотирьох секцій з електромагнітними клапанами, які дозують за заданим алгоритмом подачу газу до форсунок (Valtek Type 30). В вході безмоторного експерименту за допомогою цього вузла здійснювалося включення-відключення подачі стиснутого охолоджуючого повітря по окремим контурам (від 2-х до 4-х). Моменти спрацювання клапанів (відкриття-закриття) відповідали заданим тестовим температурам. Крім динаміки зміни температур в контрольних точках дослідних вузлів в процесі охолодження контролювалися також тиск, температура, витрати охолоджувача по окремим контурам. Проведений безмоторний експеримент підтвердив правильність прийнятих схемних рішень, а також доводить можливість в подальшому застосовувати в системах ЛПО серійні вузли ГБО.