Кафедра "Загальна електротехніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2838

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ze

Кафедра "Загальна електротехніка" заснована в 1931 році на базі електротехнічного факультету.

Курс електротехніки як самостійної дисципліни першим почав читати Клобуков Микола Петрович ще в 1892 році. Першим завідувачем кафедри був професор Копняєв Павло Петрович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут" .

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 5 кандидатів технічних наук; 2 співробітника мають звання професора, 3 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 65
  • Ескіз
    Документ
    Сравнительный анализ силовых и скоростных показателей линейных импульсных электромеханических преобразователей электродинамического и индукционного типов
    (Інститут електродинаміки НАН України, 2019) Болюх, Владимир Федорович; Кашанский, Юрий Владимирович; Щукин, Игорь Сергеевич
    Целью статьи является определение влияния геометрических параметров обмоток индуктора и якоря на силовые и скоростные показатели линейных импульсных электромеханических преобразователей (ЛИЭП) индукционного и электродинамического типов. Разработана цепная математическая модель ЛИЭП, описывающая взаимосвязанные электрические, магнитные, механические и тепловые процессы. Установлены геометрические соотношения обмоток индуктора и якоря (аксиальная высота, количество слоев и витков медной шины), при которых обеспечиваются максимальные силовые и скоростные показатели указанных преобразователей. Силовые и скоростные показатели преобразователя электродинамического типа выше, чем у преобразователя индукционного типа, однако конструктивно он является более сложным. В наиболее эффективном преобразователе индукционного типа возникают значительные потери в обмотке индуктора, а потери в обмотке якоря незначительны, что обусловливает относительно низкий КПД - 10,9 %. В наиболее эффективном преобразователе электродинамического типа потери в обмотке индуктора уменьшаются, а в обмотке якоря возрастают, что приводит к повышенному КПД - 20,0 %. Библ. 10, рис. 4.
  • Ескіз
    Документ
    Особенности возбуждения линейного электромеханического преобразователя индукционного типа от источника переменного тока
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Болюх, Владимир Федорович; Кашанский, Юрий Владимирович; Щукин, Игорь Сергеевич
    Разработана цепная математическая модель линейного электромеханического преобразователя индукционного типа при возбуждении от источника переменного тока, в которой решения уравнений, описывающие взаимосвязанные электрические, магнитные, механические и тепловые процессы, представлены в рекуррентном виде. Установлено, что при работе преобразователя в ударно-силовом режиме электродинамическая сила изменяется с удвоенной частотой, принимая как положительные, так и отрицательные значения. Положительные значения силы превышают отрицательные и величина импульса электродинамической силы с каждым периодом увеличивается. В зависимости от начальной фазы напряжения относительное изменение величины импульса силы составляет 1,5 %. При работе преобразователя в скоростном режиме максимальный ток в обмотке индуктора в первый полупериод имеет наибольшее значение, но через несколько периодов принимает постоянное значение. В зависимости от начальной фазы напряжения относительное изменение максимальной скорости обмотки якоря составляет 2,5 %.
  • Ескіз
    Документ
    Возбуждение серией импульсов линейного импульсного преобразователя электродинамического типа, работающего в силовом и скоростном режимах
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Болюх, Владимир Федорович; Щукин, Игорь Сергеевич
    Представлена математическая модель линейного импульсного преобразователя электродинамического типа (ЛИПЭТ), в которой решения уравнений, описывающих взаимосвязанные электрические, магнитные, механические и тепловые процессы, представлены в рекуррентном виде. Исследованы электромеханические и электродинамические характеристики ЛИПЭТ при работе в скоростном режиме, обеспечивающем ускорение обмотки якоря с исполнительным элементом, и в силовом режиме, когда обмотка якоря заторможена. Показано, что при возбуждении одиночным импульсом ЛИПЭТ, работающего в скоростном режиме, по сравнению с силовым режимом происходит уменьшение амплитуды тока в обмотках на 7,5 %, амплитуды электродинамических усилий (ЭДУ) – на 21,8 %, значения импульса ЭДУ – на 27,1 %. При этом обмотка якоря с исполнительным элементом разгоняется до скорости 7,1 м/с. При возбуждении серией импульсов от одинаковых секций емкостного накопителя энергии (ЕНЭ) и работе ЛИПЭТ в силовом режиме амплитуды импульсов тока и ЭДУ практически неизменны, а при работе в скоростном режиме происходит последовательное уменьшение амплитуд токов и ЭДУ. Увеличение количества импульсов возбуждения при сохранении энергии ЕНЭ приводит к уменьшению основных показателей ЛИПЭТ. Но за счет уменьшения амплитуды ЭДУ, которая проявляется как сила отдачи, эффективность ЛИПЭТ увеличивается. Для ЛИПЭТ, работающего в скоростном режиме, предложено уменьшение максимальных амплитуд тока и ЭДУ за счет последовательного увеличения емкостей секций ЕНЭ, формирующих серии импульсов возбуждения. Для ЛИПЭТ, работающего в силовом режиме, целесообразно использовать одинаковые емкости всех секций ЕНЭ.
  • Ескіз
    Документ
    Влияние формы импульса возбуждения на силовые и скоростные показатели линейных ударных электромеханических преобразователей индукционного и электродинамического типов
    (Национальный технический университет "Харьковский политехнический институт", 2020) Болюх, Владимир Федорович; Щукин, Игорь Сергеевич
    На основе математической модели, учитывающей взаимосвязанные электрические, магнитные, механические и тепловые процессы, исследовано влияние колебательно-затухающего, однополупериодного и апериодического импульсов возбуждения на показатели линейных ударных электромеханических преобразователей (ЛУЭП) индукционного и электродинамического типов в режимах холостого хода, нагрузки и торможения. Показано, что наиболее высокие скоростные показатели возникают в режиме холостого хода, когда обмотка якоря разгоняется без исполнительного элемента, а наиболее высокие силовые показатели – в режиме торможения, при котором якорь неподвижен. Установлено, что наибольшую скорость (18,95 м/с) обеспечивает ЛУЭП электродинамического типа при возбуждении однопополупериодным и колебательно-затухающим импульсами в режиме холостого хода. Наибольший КПД (29,2 %) имеет ЛУЭП электродинамического типа при возбуждении однополупериодным импульсом в режиме холостого хода. Наибольшую величину импульса электродинамических усилий (19,2 Н∙с) развивает ЛУЭП индукционного типа в режиме торможения. Наибольшее превышение температуры обмотки индуктора (1,7 К) происходит в ЛУЭП индукционного типа в режиме холостого хода, а наибольшее превышение температуры обмотки якоря (0,7 К) – в ЛУЭП электродинамического типа в режиме торможения.
  • Ескіз
    Документ
    Оптимизационный подход к выбору параметров линейного импульсного индукционного электромеханического преобразователя
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Болюх, Владимир Федорович; Щукин, Игорь Сергеевич
    Разработан оптимизационный подход к выбору параметров линейного импульсного индукционного электромеханического преобразователя (ЛИИЭП) с многовитковым короткозамкнутым якорем. Он состоит в нахождении максимума интегрального критерия эффективности, учитывающего максимальную скорость и КПД преобразователя скоростного назначения, амплитуду и импульс электродинамических усилий в преобразователе силового назначения при минимальных превышениях температур, массе активных элементов и токе индуктора. При этом используется цепная математическая модель, которая учитывает взаимосвязанные электрические, магнитные, тепловые и механические процессы ЛИИЭП. Разработана методика поиска максимума интегрального критерия эффективности ЛИИЭП в поисковом пространстве с использованием глобального и локального методов оптимизации. В качестве глобального метода используются генетические алгоритмы, а в качестве локального – метод Нелдера-Мида. Установлены электрические параметры емкостного накопителя энергии и геометрические параметры ЛИИЭП, обеспечивающие наибольшие значения интегрального критерия эффективности в зависимости от принятого варианта стратегии оценки эффективности. В оптимизированных преобразователях скоростного и силового назначения интегральные критерии эффективности в среднем в 2,2 раза выше, чем в ЛИИЭП основного исполнения.
  • Ескіз
    Документ
    Исследование линейного импульсного электро-механического преобразователя индукционного типа с двойным якорем, предназначенного для уничтожения информации на SSD накопителе
    (НТУ "ХПИ", 2018) Болюх, Владимир Федорович; Кашанский, Юрий Владимирович; Кочерга, Александр Иванович; Щукин, Игорь Сергеевич
    При помощи математической модели, учитывающей взаимосвязанные электрические, магнитные, тепловые и механические процессы исследовано влияние геометрических параметров на электродинамические характеристики и показатели линейного импульсного электромеханического преобразователя (ЛИЭП) индукционного типа с двойным якорем, охватывающим индуктор с противоположных сторон. При аксиальном удалении задней части якоря от индуктора максимальные плотности токов в индукторе уменьшается, в передней части якоря увеличивается, а в задней части якоря уменьшается. Максимальная величина и импульс электродинамических усилий (ЭДУ) между частями якоря уменьшаются. При увеличении числа витков индуктора и уменьшении толщины медной шины происходит увеличение всех основных показателей ЛИЭП. При увеличении числа витков индуктора от 26 до 56 максимальная величина ЭДУ, действующая между частями якоря, возрастает практически в 3 раза, а величина импульса ЭДУ в 3,3 раза. При увеличении ширины медной шины и ширины индуктора происходит уменьшение основных показателей ЛИЭП. При увеличении ширины индуктора от 10 мм до 20 мм максимальная величина ЭДУ между частями якоря уменьшается в 1,3 раза, а величина импульса ЭДУ уменьшается в 1,2 раза. На основании проведенных исследований был разработан и экспериментально испытан образец ЛИЭП индукционного типа с двойным якорем, предназначенный для уничтожения информации, размещенной на цифровом SSD накопителе.
  • Ескіз
    Документ
    Индукционно-динамическое устройство уничтожения информации на цифровом SSD накопителе
    (НТУ "ХПІ", 2018) Болюх, Владимир Федорович; Щукин, Игорь Сергеевич
  • Ескіз
    Документ
    Влияние формы импульса тока возбуждения на эффективность линейного импульсно-индукционного электромеханического преобразователя
    (НТУ "ХПІ", 2018) Болюх, Владимир Федорович; Кочерга, Александр Иванович; Щукин, Игорь Сергеевич
  • Ескіз
    Документ
    Линейные импульсные электромеханические преобразователи комбинированного типа
    (НТУ "ХПІ", 2018) Болюх, Владимир Федорович; Кочерга, Александр Иванович; Щукин, Игорь Сергеевич
  • Ескіз
    Документ
    Электромеханические процессы в линейном импульсно-индукционном электромеханическом преобразователе с подвижным индуктором и двумя якорями
    (НТУ "ХПИ", 2018) Болюх, Владимир Федорович; Кочерга, Александр Иванович; Щукин, Игорь Сергеевич
    Разработана математическую модель, которая описывает электромеханические процессы в линейном импульсно-индукционном электромеханическом преобразователе с подвижным индуктором, взаимодействующим со стационарным якорем (СЯ) и подвижным якорем (ПЯ), ускоряющим исполнительный элемент. Установлено влияние высот якорей на электромеханические процессы в преобразователе. Если высота СЯ в два раза больше высоты ПЯ, то на индуктор в начальный момент времени действуют электродинамические усилия (ЭДУ), прижимающие его к СЯ и перемещение индуктора начинается с задержкой 0,35 мс. Если высота ПЯ в два раза больше высоты СЯ, то на индуктор в начальный момент времени действуют ЭДУ, отталкивающие его от СЯ, и его перемещение начинается с задержкой 0,1 мс. Если высоты СЯ и ПЯ равны, то до момента времени 0,15 мс на индуктор практически не действуют ЭДУ и перемещение индуктора начинается с задержкой 0,25 мс. Установлены комбинации геометрических параметров якорей, при которых действуют как наибольшие, так и наименьшие импульсы ЭДУ. Наибольшие скорости развивает наиболее низкий ПЯ, причем высота СЯ на них практически не влияет. С увеличением массы исполнительного элемента происходит увеличение токов в активных элементах преобразователя и уменьшение скоростей индуктора и ПЯ. При этом максимальные значения ЭДУ, действующих на индуктор, уменьшаются, а на якоря – увеличиваются.