Кафедра "Загальна електротехніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2838

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ze

Кафедра "Загальна електротехніка" заснована в 1931 році на базі електротехнічного факультету.

Курс електротехніки як самостійної дисципліни першим почав читати Клобуков Микола Петрович ще в 1892 році. Першим завідувачем кафедри був професор Копняєв Павло Петрович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут" .

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 5 кандидатів технічних наук; 2 співробітника мають звання професора, 3 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 18
  • Ескіз
    Документ
    Influence of an excitation source on the power indicators of a linear pulse electromechanical converter of induction type
    (Інститут електродинаміки НАН України, 2021) Bolyukh, V. F.; Shchukin, I. S.
    The purpose of the article is to evaluate the efficiency of an induction-type linear pulse electromechanical converter (LPEC) when operating in shock-power mode and excitation from an alternating voltage source (AVS) in comparison with excitation from a capacitive energy storage (CES). A mathematical model of an induction-type LPEC has been developed both when excited by a unipolar pulse from a CES and from an AVS using lumped parameters of the windings, which takes into account the interrelated electromagnetic, mechanical and thermal processes. It has been found that when the LPEC is excited from the AVS with a voltage frequency of 50 Hz, the electrodynamic force takes on a periodic decaying character with a significant prevalence of positive components of forces over negative ones. The maximum value of the force is much less, and the value of its impulse is much greater than in the LPEC, excited from the CES. With an increase in the frequency of the AVS voltage from 50 to 150 Hz, the highest value of the current density of the inductor winding decreases, and in the armature winding it increases. The greatest values of force and impulse of force are realized at a voltage frequency of 150 Hz. With an increase in the AVS frequency, the relative indicator of the efficiency of the LPEC increases.
  • Ескіз
    Документ
    Excitation of a pulse electromechanical converter of electrodynamic type from a two-section capacitor energy storage
    (Інститут електродинаміки НАН України, 2021) Bolyukh, V. F.
    A mathematical model of a pulsed electromechanical converter (PEC) of electrodynamic type has been developed, in which the solutions of the equations are presented in a recurrent form, which, when numerically implemented, allows taking into account the interrelated electrical, magnetic, mechanical and thermal processes and their nonlinear parameters. While maintaining the total energy of the pulsed source, the influence of the distribution of energy between the two sections of the capacitive energy storage (CES) and the voltage at which the additional section of the CES is connected was established. When operating in an accelerating mode, the largest amplitude of electrodynamic forces (EDF) and maximum speed occur in the basic version of the PEC, which is excited only from the main section of the CES, and the most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 2.61 higher than for the basic version of the PEC. When operating in the shock-power mode, compared with the basic version of the PEC, the amplitude of the EDF decreases. The most effective is the PEC with the smallest capacity of the main section of the CES, and its maximum value is 5.17 higher than that of the basic version of the PEC. Experimental studies of the PEC in the shock-power mode established that the oscillograms of the voltage of the CES and the current of the PEC correspond to the calculated characteristics, and their main indicators are consistent with each other with an accuracy of 5-7%.
  • Ескіз
    Публікація
    Influence of pulse excitation on electromechanical indicators of a linear pulse converter of electrodynamic type
    (Національний гірничий університет, 2020) Bolyukh, V. F.; Kashanskyi, Yu. V.; Shchukin, I. S.
    Purpose. Investigation of the effect of pulsed excitation of the electronic circuit-controlled inductor and armature windings, powered with the capacitive energy storage (CES) source, on the speed and power indicators of a linear pulse electrodynamic converter (LPEC). Methodology. On the basis of the developed numerical model, the influence of pulsed excitation — vibrationally damped, halfwave, aperiodic, and aperiodic with recharge, on the characteristics and performance of LPEC is studied. The mathematical model of the LPEC, using the lumped parameters of the stationary winding of the inductor and the movable winding of the armature, takes into account the interconnected electromagnetic, mechanical and thermal processes, presenting their solutions in a recursive form. Findings. It was found that the pulse excitation of the LPEC insignificantly affects the maximum speed, the pulse of electrodynamic forces (EDF) and the temperature rise of the inductor winding. The highest values of the maximum speed and impulse of an EDF arise upon excitation by a vibrationally damped current pulse, while the smallest ones – upon excitation by an aperiodic pulse. The LPEC excitation by an aperiodic current pulse with recharge allows the use of a reduced charge voltage for rechargeable CES. With a decrease in this voltage and with conservation of the energy of the CES, the amplitude of the EDF decreases by 31.5 %, but due to the delay of electromagnetic processes, the pulse of the EDF increases by 3 %, and the efficiency – by 8.2 %. Originality. A comprehensive criterion for the LPEC efficiency was introduced, which takes into account the amplitude of the excitation current, the mass of the windings, the temperature of the inductor winding, the magnitude of the EDF pulse, the efficiency, and the maximum speed for a given reliability coefficient. Using this criterion, we found that in terms of power and speed indicators, the most efficient is a converter excited by an aperiodic current pulse with recharge, and the quality of work is a converter excited by an aperiodic pulse. Practical value. The influence of the width of the copper bus and the corresponding axial heights of the windings of the inductor and the armature on the speed and power performance of the LPEC using vibration-damping, half-wave, aperiodic and aperiodic with recharge current pulses is established.
  • Ескіз
    Документ
    Effect of electric conducting element on indicators of linear pulse electromechanical converter induction type
    (Інститут електродинаміки НАН України, 2020) Bolyukh, V. F.
    The purpose of the article is to study the influence of geometric parameters and the location of a coaxially located electrically conductive element (ECE), made in the form of a thin-walled disk, ring or hollow cylinder, on the characteristics and performance of an induction-type linear pulse electromechanical converter (LPEC). A mathematical model has been developed that describes the electromechanical and thermal processes in an induction-type LPEC using the concentrated parameters of active elements. It is shown that the ECE, coaxially mounted near the inductor winding, has a negative effect on the performance of the LPEC. The smallest value of the converter efficiency of 6.1% occurs when ECE is used in the form of a thin copper disk 0.5 mm high, in which the radial dimensions are similar to the sizes of the windings of the inductor and the armature installed at a minimum distance from the inductor. Moreover, the temperature rise of the electrically conductive element is maximum and equal to 51°С. With an increase in the thickness of the ECE and with its removal from the inductor, the efficiency of the LPEC increases, and the excess of the temperature of the ECE decreases. When removing a disk ECE with a height of 1.0 mm at a distance of 10 mm from the inductor, the efficiency of the LPEC is 12.6%, and the excess of the ECE temperature is 6 °C.
  • Ескіз
    Документ
    Increasing the efficiency of the surface-mounted ultrasonic electromagnetic-acoustic transducer on account of the magnetic field source
    (Інститут електродинаміки НАН України, 2023) Suchkov, G. M.; Bolyukh, V. F.; Kocherga, A. I.; Mygushchenko, R. P.; Kropachek, O. Yu.
    Model studies were carried out using the COMSOL Multiphysics package, aimed at ensuring the forming of a permanent magnet magnetic field at a considerable distance to a ferromagnetic product from its pole, which is necessary to create efficient portable ultrasonic electromagnetic-acoustic transducers of thickness gauges and testing and diagnostic devices. It is theoretically shown and experimentally confirmed that for portable measuring ultrasonic devices it is expedient to set the height of the permanent magnet at about 60 mm and the cross section of the magnet pole 50x50 mm2. At the same time, with a gap between the magnet pole and the product of about 30 mm, the value of the normal component of the magnetic field induction near the surface of the object is about 0.3...0.4 T, which is sufficient for thickness gauging or diagnostics of ferromagnetic products using the ultrasonic pitch-and catch method.
  • Ескіз
    Документ
    Lectures on electrical engineering
    (National Technical University "Kharkiv Polytechnic Institute", 2023) Boliukh, Volodymyr; Korytchenko, Kostyantyn; Markov, Vladyslav; Polyakov, Igor; Honcharov, Yevgen; Kriukova, Natalia
    This tutorial contains a course of lectures within the discipline of "Electrical Engineering, Electronics and Microprocessor Technology". The manual is intended for students of universities to study electrical disciplines in English, and will also be useful to a wide range of specialists and scientists working in the field of electrical engineering and related areas of science and technology.
  • Ескіз
    Публікація
    Електромеханічний пристрій для ударно-статичного пресування керамічних порошкових матеріалів
    (ДП "Український інститут інтелектуальної власності", 2022) Болюх, Володимир Федорович; Кашанський, Юрій Володимирович; Щукін, Ігор Сергійович; Щукіна, Людмила Павлівна
    Електромеханічний пристрій для ударно-статичного пресування керамічних порошкових матеріалів містить обмотку індуктора 1, штовхач 2 і пуансон 3, які виконані у вигляді єдиного цілого, та циліндричну матрицю 4, які коаксіально встановлені в циліндричному корпусі 5. Всередині циліндричної матриці 4 розташований керамічний порошковий матеріал 6, з яким зверху контактує пуансон 3, а знизу контактує виступ основи 7. Обмотка індуктора 1 своєю нижньою торцевою стороною контактує з дисковим електропровідним якорем 8, а своєю верхньою торцевою стороною контактує з феромагнітним диском 9. Циліндричний корпус 5 виконаний з двох частин 5а та 5b, які з'єднані між собою за допомогою храпового механізму 12, що забезпечує переміщення верхньої частини 5b вниз відносно нижньої 5а. Обмотка індуктора приєднана до магнітно-імпульсної установки 10, яка підключена до джерела однофазного змінного струму 13 з напругою 1u. Вона включає однофазний підвищувальний трансформатор 14, первинна обмотка якого підключена до джерела 13, а до вторинної обмотки якого підключено два електричних кола збудження, які паралельно підключені до рухливих струмовводів а, b обмотки індуктора 1. Перше електричне коло збудження підключене до зовнішніх виводів Т1 і Т2 вторинної обмотки трансформатора 14 на напругу 2u, а друге електричне коло збудження підключене до зовнішнього Т1 і додаткового Т3 виводів вторинної обмотки трансформатора 14 на напругу. Пристрій дозволяє підвищити ефективність роботи за рахунок комбінації циклічного ударного і статичного пресування керамічних порошкових матеріалів.
  • Ескіз
    Документ
    Спосіб вимірювання прискорення вільного падіння за допомогою балістичного лазерного гравіметра з індукційно-динамічною катапультою
    (ДП "Український інститут інтелектуальної власності", 2022) Болюх, Володимир Федорович; Вінніченко, Олександр Іванович; Омельченко, Анатолій Васильович; Неєжмаков, Павло Іванович
    Винахід належить до галузі гравіметрії і може бути використаний в балістичних гравіметрах для вимірювань абсолютних значень прискорення вільного падіння g . Спосіб вимірювання прискорення вільного падіння за допомогою балістичного лазерного гравіметра з індукційно-динамічного катапультою здійснюють наступним чином. Спочатку вимірювання прискорення вільного падіння здійснюють окремо симетричним і окремо несиметричним методами при фіксованому положенні балістичного лазерного гравіметра. Ці вимірювання проводять в особливих умовах, а саме, при низькому рівні сейсмічних завад, що реалізується в нічний час, і підвищеного рівня вакууму у вакуумній камері, що досягається при працюючому вакуумному насосі. На підставі цих вимірювань визначають автосейсмічну складову похибки вимірювань. Потім здійснюють вимірювання прискорення вільного падіння симетричним методом. Це вимірювання проводять в реальних умовах, а саме, при підвищеному рівні сейсмічних завад, наприклад в денний час, і зниженому рівні вакууму у вакуумній камері, наприклад принепрацюючому вакуумному насосі.
  • Ескіз
    Документ
    Імпульсний аксіальний індуктивний прискорювач плазмового кільця в повітряному середовищі атмосферного тиску
    (ДП "Український інститут інтелектуальної власності", 2022) Сокол, Євген Іванович; Коритченко, Костянтин Володимирович; Болюх, Володимир Федорович; Буряковський, Сергій Геннадійович; Резинкін, Олег Лук'янович
    Винахід належить до плазмової техніки і до плазмових технологій, а більш конкретно стосується плазмових прискорювачів. Імпульсний аксіальний індуктивний прискорювач плазмового кільця в повітряному середовищі атмосферного тиску складається з коаксіально розташованих циліндричної напрямної труби, зовнішнього циліндричного магніту і системи термічної іонізації речовини до плазмового стану. Один з відкритих торців циліндричної напрямної труби знаходиться в повітряному середовищі, а на іншому її торці розташована система формування газового потоку. Усередині напрямної труби коаксіально розташовано внутрішній циліндричний магніт, який утворює з зовнішнім циліндричним магнітом магнітну систему, яка формує поперечну відносно осі напрямної труби компоненту індукції магнітного поля. Система термічної іонізації речовини складається з розташованого в зазорі між напрямною трубою і внутрішнім циліндричним магнітом електропровідного кільця, що переходить в плазмовий стан в результаті електричного вибуху. Система формування газового потоку складається з газодетонаційної труби, що закрита з одного з торців, і системи подачі газодетонаційного газу. Електропровідне кільце виконано у вигляді дроту, що складається з двох однакових частин, кінці яких з'єднані між собою і підключені за допомогою комутатора до високовольтного імпульсного накопичувача енергії, або у вигляді фольги у формі плоского диска, що обмежує вихід газодетонаційного газу з напрямної труби. Циліндричні електромагніти за допомогою комутатора підключені до імпульсного накопичувача енергії, а напрямна труба виконана з ізоляційного матеріалу. Технічним результатом винаходу є підвищення питомої потужності, простота в управлінні роботою, підвищення надійності, зменшення витрат під час виготовлення і експлуатації, зменшення габаритних розмірів.
  • Ескіз
    Документ
    Спосіб резонансного посилення електричної потужності за допомогою двох активно-реактивних послідовних контурів із загальним ємнісним накопичувачем енергії
    (ДП "Український інститут інтелектуальної власності", 2021) Батигін, Юрій Вікторович; Чаплигін, Євген Олександрович; Шиндерук, Світлана Олександрівна; Болюх, Володимир Федорович; Кочерга, Олександр Іванович
    Спосіб резонансного посилення електричної потужності за допомогою двох активно-реактивних послідовних контурів, при якому застосовують загальний ємнісний накопичувач енергії, заряд якого здійснюють в ланцюзі першого послідовного контуру з джерелом гармонічної напруги, а розряд зарядженого накопичувача здійснюють на активне навантаження ланцюга другого послідовного контуру.