Кафедра "Зварювання"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5280
Офіційний сайт кафедри http://web.kpi.kharkov.ua/svarka
Кафедра "Зварювання" заснована у 2010 році професором Віталієм Володимировичом Дмитриком. Ініціював створення кафедри особисто академік Борис Євгенович Патон. Її створення зумовлене проханням провідних підприємств – флагманів економіки України: ОАО "Турбоатом", ОАО "Електроважмаш", ОАО Харківський турбінний завод, ГП завод ім. Малишева, ОАО Харківський авіаційний завод та ін.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 4 кандидата технічних наук; 2 співробітника мають звання професора, 3 – доцента.
Переглянути
Результати пошуку
Документ Самопоширюваний високотемпературний синтез: стан, проблеми та перспективи розвитку(Таврійський національний університет ім. В. І. Вернадського, 2022) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичРоботу присвячено одній з актуальних проблем галузевого машинобудування – підвищенню ресурсу деталей сільськогосподарської та ґрунтообробної техніки за рахунок нанесення зміцнюючих та відновлювальних покриттів на основі композиційних матеріалів. У якості перспективного методу отримання композиційних матеріалів запропоновано використання – самопоширюваного високотемпературного синтезу (СВС), одного з високотехнологічних, наукоємних, енерго- та ресурсозберігаючих методів. Висвітлено історичні передумови та внесок О. Г. Мержанова, І. П. Боровінської та В. М. Шкиро у відкриття нового фізичного явища «твердого полум’я», що стало основою до появи СВС, ретроспективно наведені основні етапи його формування та розвитку. На основі огляду вітчизняних наукових робіт та розробок з використанням СВС-технології висвітлено створення трибологічних матеріалів типу TiFe-xC, проаналізовано та порівняно результати з розробки пористих (фільтраційних) металокерамічних матеріалів з використанням відходів машинобудування, представлено результати математичних розрахунків СВС-реактору та деяких реакцій синтезу, окреслено можливості суміщення СВС з технологіями нанесення покриттів. Авторами статті наведено власні наукові результати щодо розробки композиційного матеріалу, отриманого з використанням самопоширюваного високотемпературного синтезу та попередньої механічної активації вихідних реагентів, що містять у якості зносостійких дисперсних фаз оксиди SiO2 та AI2O3. На основі проведених досліджень підтверджено перспективність використання розробленого композиційного матеріалу зі структурою «зміцнююча фаза – матриця» {10 % (Ti–C–SiO2–Al2O3–Fe2O3–Al– ПТ-НА-01) + 90 % (ПГ-10Н-01)} для дугового наплавлення зміцнюючих та відновлювальних покриттів деталей машин. В кінці роботи сформульовано загальні висновки та наведено перелік подальших перспективних досліджень за цим напрямом.Документ Зносостійкі наплавлені композиційні шари на основі cамофлюсівного сплаву системи NiCrBSi(Інститут надтвердих матеріалів ім. В. М. Бакуля НАН України, 2023) Ситников, Павло АндрійовичДокумент Дослідження впливу параметрів механічної активації шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01 на тривалість синтезу композиційного матеріалу, що модифікує(Харківський національний автомобільно-дорожній університет, 2023) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичУ роботі досліджено вплив параметрів механічної активації на тривалість синтезу та морфологію шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01, призначеної для одержання композиційного матеріалу, що модифікує, отриманого самопоширюваним високотемпературним синтезом. Як вихідні матеріали використано порошки Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01. Механічну активацію шихти з варіюванням параметрів оброблення здійснено у розробленому авторами роботи кульовому млині моделі КМ-1, перервного принципу дії з об’ємом робочого сталевого барабана 1,5‧10⁻⁴м³. Маса млина становить 5,8 кг, габарити – (Ш–В–Д) 190–180–230 мм. Тривалість механічного оброблення шихти складала від 1 до 25 хв зі швидкістю обертання барабана від 50 до 180 об/хв. Співвідношення маси шихти до маси тіл подрібнення (сталевих куль, діаметром 6 мм) становило 1 : 20 та 1 : 40. Дослідженнями визначено, що рекомендованим режимом механічної активації шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01 є оброблення протягом 15 хв за швидкості обертання барабана 130 об/хв та співвідношення 1 : 40 маси шихти до маси сталевих куль. Гранулометричний склад шихти зменшується з максимального розміру 100 мкм до 40 мкм. На основі досліджень визначено, що таке оброблення шихти призводить до підвищення хімічної активності компонентів та ефективності протікання СВС-процесу внаслідок зниження тривалості його ініціювання та процесу синтезу.Документ Композиційні матеріали для наплавлення, одержанні з використанням СВС-процесу(2023) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичДокумент Композиційний матеріал для наплавлення деталей, які працюють в умовах абразивного середовища(2023) Ситников, Павло Андрійович; Лузан, Сергій ОлексійовичДокумент Вибір зв’язуючої речовини композиційного матеріалу застосованого для дугового наплавлення(Таврійський державний агротехнологічний університет ім. Дмитра Моторного, 2023) Ситников, Павло АндрійовичДокумент Кульовий млин для механічної активації матеріалів(Національний технічний університет "Харківський політехнічний інститут", 2022) Ситников, Павло Андрійович; Лузан, Сергій ОлексійовичДокумент Підвищення ресурсу деталей машин за рахунок дугового наплавлення композиційних матеріалів(2022) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичДокумент Композиційний матеріал для зміцнення робочих органів грунтообробних машин(2022) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичДокумент Перспективи використання композиційних матеріалів для підвищення ресурсу деталей машин(Державний університет "Житомирська політехніка", 2022) Лузан, Сергій Олексійович; Ситников, Павло Андрійович