Кафедра "Загальна та неорганічна хімія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7445

Офіційний сайт кафедри http://web.kpi.kharkov.ua/onch

Від 1948 року, коли кафедра неорганічної хімії злилася з кафедрою загальної хімії, кафедра має назву "Загальна та неорганічна хімія".

Від дня заснування Харківського Технологічного інституту в 1885 році загальноосвітні відділи хімії були представлені однією кафедрою хімії, в яку входили лабораторії неорганічної, органічної і аналітичної хімії. Прикладні хімічні науки читали професор Валерій Олександрович Геміліан, Олександр Павлович Лідов та ін. До 1912 року кафедру очолював професор Іван Павлович Осипов (1855-1918). У 1918 році кафедра хімії розділилася на кафедри неорганічної, органічної, аналітичної і фізичної хімії. Від 1925 року кафедри неорганічної та аналітичної хімії об’єдналися в одну кафедру. У 1930 році, при організації Хіміко-технологічного інституту, кафедра неорганічної та аналітичної хімії продовжувала свою роботу в тому ж складі аж до 1948 року.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 7 кандидатів наук: 4 – технічних, 2 – хімічних, 1– історичних; 6 співробітників мають звання доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Фотокаталітичні властивості електролітичних покриттів на основі кобальту
    (Видавнитво від А до Я, 2021) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна; Зюбанова, Світлана Іванівна
  • Ескіз
    Документ
    Електроліт для нанесення покриттів сплавом залізо-кобальт-ванадій
    (ДП "Український інститут інтелектуальної власності", 2019) Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Зюбанова, Світлана Іванівна; Проскуріна, Валерія Олегівна
    Електроліт для нанесення покриттів сплавом залізо-кобальт-ванадій, містить солі кобальту і заліза, борну кислоту, сульфат заліза (III), сульфат кобальту, цитрат натрію, сульфат натрію, оксид ванадію.
  • Ескіз
    Документ
    Електроліт для нанесення покриттів сплавом кобальт-ванадій
    (ДП "Український інститут інтелектуальної власності", 2019) Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Зюбанова, Світлана Іванівна; Проскуріна, Валерія Олегівна
    Електроліт для нанесення покриттів сплавом кобальт-ванадій містить сульфат кобальту, цитрат натрію. При цьому він містить оксид ванадію, при такому співвідношенні компонентів, г/дм³: сульфат кобальту 40-60 цитрат натрію 90-120 оксид ванадію (V) 18-27 рН 2,8-3,3.
  • Ескіз
    Документ
    Спосіб одержання гальванічних ванадійвмісних кобальтових покриттів
    (ДП "Український інститут інтелектуальної власності", 2019) Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Зюбанова, Світлана Іванівна; Проскуріна, Валерія Олегівна; Волобуєв, Максим Миколайович
    Спосіб одержання гальванічних ванадійвмісних покриттів кобальтом шляхом електроосадження. Процес проводять постійним струмом густиною 8-14 А/дм² у комплексному цитратному електроліті, що містить сульфат кобальту, цитрат натрію, оксид ванадію (V), рН 2,8-3,3, при температурі 35-40 °C.
  • Ескіз
    Документ
    Фотокаталітична активність металоксидних систем на основі допованих d–елементами сплавів титану
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Сахненко, Микола Дмитрович; Степанова, Ірина Ігорівна; Зюбанова, Світлана Іванівна; Дженюк, Анатолій Володимирович; Індиков, Сергій Миколайович
    ДослідженоCo-,W-, Mo- таZn- вмісні гетеро-оксидні наноструктуровані покриття на титані та його сплавах, сформовані методом плазмо-електролітного оксидування (ПЕО) у гальваностатичному режимі з лужних електролітів. Морфологію поверхні сформованих покриттів вивчали методом сканівної мікроскопії на мікроскопі ZEISS EVO 40XVP. Фазовий склад одержаних покриттів визначали на рентгенівському дифрактометрі ДРОН-2. Фотокаталітичну активність плівок ZnO-WO3/TiO2, ZnO-МоO3/TiO2, ZnO-Со3O4/TiO2, СоO-WO3/TiO2 тестували в модельній реакції розкладання водного розчину барвника метилового жовтогарячого з концентрацією 12,2·10-5 моль/л (МЖ) при УФ опроміненні. Показано, що при плазмо-електролітному оксидуванні титану та його сплавів у лужних дифосфатних електролітах в режимі «спадаючої потужності» формуються гетероструктурні композіції з мікро-глобулярною морфологією поверхні. Підтверджено можливість керування фазовим та елементним складом оксидних шарів, а також топографією поверхні за рахунок зміни складу електроліту і вмісту окремих компонентів, а також режимів формування. Сформовані у ПЕО-режимах гетерооксидні покриття різняться складом і морфологією поверхні, але всі виявляють фотокаталітичні властивості різного ступеню активності. Дослідження за допомогою УФ-тестування фотокаталітичної активності одержаних покриттів в реакції розкладання азобарвника дозволило провести ранжування гетерооксидних систем за означеним параметром. Так, ступінь розкладання МЖ на плівках ZnO-WO3/TiO2 за 50 хвилин склала 23 %. Метал-оксидні системи ZnO-Со3O4/TiO2 мали схожі характеристики ступеню розкладання – 21 %. Інкорпорація оксидів СоO таWO3 до складу покриття знизило каталітичну активність системи до 19 %. Нестабільний режим формування оксидів ZnO-МоO3/TiO2 та низька швидкість процесу вплинули на якість каталітичної активності покриття, що зменшило ступінь розкладання МЖ до значень, притаманних монооксиду оксиду титану Ті/ТіО2 без допантів. Порівняння кількісних характеристик властивостей отриманих покриттів дозволило визначили вплив допантів, інкорпорованих до складу метал-оксидних систем, на їх фотокаталітичну активність.
  • Ескіз
    Документ
    Резистивні властивості точкових контактів Янсона в умовах інверсії поляризації
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Поспєлов, Олександр Петрович; Камарчук, Геннадій Васильович; Сахненко, Микола Дмитрович; Савицький, Андрій Володимирович; Проскуріна, Валерія Олегівна; Зюбанова, Світлана Іванівна
    Чутливим елементом квантового сенсора нового покоління є дендритний точковий контакт Янсона. Аналіти, які знаходяться в просторі, що оточує чутливий елемент, здатні взаємодіяти зі свіжоутвореною поверхнею каналу провідності квантового точкового контакту Янсона, а також з верхівкою дендриту в процесі його росту. Така взаємодія забезпечує вплив досліджуваних речовин на конфігурацію вихідної характеристики сенсора, якою є гістограма провідності системи. Гістограма провідності будується на основі хронорезистограми автоколивального процесу точково-контактної комутації, яка безпосередньо реєструється в умовах автоколивань. У структурі сенсорного елемента дендритний точковий контакт Янсона, занурено в електроліт і в електричному полі формує хронорезистограму, характер якої залежить від складу оточуючого середовища. В роботі розглянуто один з аспектів механізму формування таких хронорезистограм. Проаналізовано особливості функціювання безщілинної електрохімічної системи в процесі автоколивального ефекту точково-контактної комутації. Моделювання чутливого елемента у вигляді безщілинної електродної системи дозволило пояснити механізм і динаміку переходу «точковий контакт Янсона – дендрит та протиелектрод в електроліті». Найважливішим параметром безщілинної електродної системи є координата межі інверсії поляризації. Показано, що уявлення про координату межі інверсії поляризації відіграє принципову роль при моделюванні резистивних властивостей точково-контактної системи та часу її життя. Синтезовані математичні моделі добре описують отримані експериментально залежності опору від часу експозиції наноструктури в електричному полі. Виявилося, що залежність опору контакту від часу експозиції, отримана в припущенні про лінійний розподіл анодної поляризації вздовж головної осі каналу провідності, описується диференціальним рівнянням, в якому швидкість росту опору прямо пропорційна кубу цього опору. Одержані матеріали забезпечують можливість цілеспрямованої оптимізації конструкційних параметрів та експлуатаційних режимів сенсорних пристроїв на основі точкових контактів Янсона для аналізу складних газоподібних та рідких сумішей.