Кафедра "Загальна та неорганічна хімія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7445
Офіційний сайт кафедри http://web.kpi.kharkov.ua/onch
Від 1948 року, коли кафедра неорганічної хімії злилася з кафедрою загальної хімії, кафедра має назву "Загальна та неорганічна хімія".
Від дня заснування Харківського Технологічного інституту в 1885 році загальноосвітні відділи хімії були представлені однією кафедрою хімії, в яку входили лабораторії неорганічної, органічної і аналітичної хімії. Прикладні хімічні науки читали професор Валерій Олександрович Геміліан, Олександр Павлович Лідов та ін. До 1912 року кафедру очолював професор Іван Павлович Осипов (1855-1918). У 1918 році кафедра хімії розділилася на кафедри неорганічної, органічної, аналітичної і фізичної хімії. Від 1925 року кафедри неорганічної та аналітичної хімії об’єдналися в одну кафедру. У 1930 році, при організації Хіміко-технологічного інституту, кафедра неорганічної та аналітичної хімії продовжувала свою роботу в тому ж складі аж до 1948 року.
Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 7 кандидатів наук: 4 – технічних, 2 – хімічних, 1– історичних; 6 співробітників мають звання доцента.
Переглянути
Результати пошуку
Документ Загальна хiмiя: авторський лекцiйний курс(Національний технічний університет "Харківський політехнічний інститут", 2024) Волобуєв, Максим Миколайович; Корогодська, Алла МиколаївнаУ навчальному посiбнику висвiтлено найважливiшi теоретичнi положення хiмiї як фундаментальної науки. Викладено основнi поняття, термiни, визначення та закони хiмiї; питання теорiї будови атома та хiмiчного зв’язку; енергетичнi, термодинамiчнi та кiнетичнi закономiрностi перебiгу хiмiчних реакцiй та стану рiвноваги. Розглянуто властивостi розчинiв, теорiї електролiтичної дисоцiацiї речовин, питання гiдролiзу речовин, окисно-вiдновних та електрохiмiчних процесiв, корозiї металiв. Систематизовано данi про комплекснi сполуки. Призначено для студентiв хiмiко-технологiчних та нехiмiчних спецiальностей, а також iнженерно-технiчних фахiвцiв-хiмiкiв.Документ Електрохiмiчнi процеси та системи(Національний технічний університет "Харківський політехнічний інститут", 2024) Волобуєв, Максим Миколайович; Ведь, Марина Віталіївна ; Корогодська, Алла Миколаївна; Степанова, Ірина Ігорівна; Проскуріна, Валерія Олегівна; Крамаренко, Андрій Вікторович; Школьнікова, Тетяна ВасилівнаУ навчально-методичному посiбнику викладено теоретичнi вiдомостi щодо одного з базових роздiлiв загальної хiмiї: електрохiмiчних процесiв та систем, в яких такi процеси вiдбуваються. Надано основнi поняття та визначення, висвiтлено питання щодо електродних рiвноваг, хiмiчних джерел струму та електрохiмiчних реакторiв, наведено приклади використання електрохiмiчних процесiв у технiцi. Для полегшення розумiння складних питань докладно розiбрано приклади розв’язання завдань. Особливу увагу придiлено проведенню дослiдiв в експериментальнiй частинi. Для закрiплення матерiалу наводяться завдання для самостiйного виконання. Призначено для викладачiв, аспiрантiв i студентiв вищих навчальних закладiв спецiальностей 161 – Хiмiчнi технологiї та iнженерiя, 162 – Бiотехнологiї та бiоiнженерiя, 181 – Харчовi технологiї, 185 – Нафтогазова iнженерiя та технологiї, також може бути корисним при вивченнi дисциплiни студентами нехiмiчних спецiальностей.Документ Дослідження впливу параметрів плазмо-електролітного оксидування на функціональні властивості гетерооксидних покривів(Національний технічний університет "Харківський політехнічний інститут", 2023) Степанова, Ірина Ігорівна; Сахненко, Микола Дмитрович; Маркова, Наталя Борисівна; Корогодська, Алла Миколаївна; Каракуркчі, Ганна Володимирівна; Індиков, Сергій МиколайовичНаведено результати досліджень впливу параметрів плазмо-електролітного оксидування в розчинах дифосфатного електроліту металевих платформ зі сплавів титану, як основи для формування гетерооксидних покривів з фотокаталітичною активністю, на рівень їх функціональних властивостей. Встановлено, що отримані в режимах ПЕО на платформах зі сплавів титану гетерооксидні покриви, до складу яких було інкорпоровано в ролі допантів сполуки цинку та вольфраму, демонструють фотокаталітичну активність в процесах деградації азобарвника під дією УФ опромінення. Підвищення концентрації оксигенвмісних сполук допантів в розчинах електролітівпозитивно впливає на їх інкорпорацію до складу монооксидної матриці композиту та морфологію і каталітичні властивості отриманих покривів. За результатами визначення морфологічних особливостей структури покривів доведено, що порівняно з монооксидом титану, як матеріалу фотокаталітичної платформи, гетерооксидні покриви мають більш розвинену глобулярну мікроструктуру поверхні, що позитивно впливає на рівень їх функціональних показників. Доведено симбатну залежність між вмістом інкорпорованих допантів і питомою площею поверхні покривів та їх фотокаталітичною активністю. Зазначено, що зміна фазової структури поверхневих шарів в процесі плазмо-електролітного формування покриву ТіО/ZnO-WO3 на поверхні металу-носія обумовлює і підвищення механічних характеристик отриманих покривів, зокрема мікротвердості майже вдвічі. Отримані результати можуть стати підґрунтям створення функціональних матеріалів для каталітичного знешкодження природних, синтетичних і техногенних токсикантів, що призведе до вирішення низки екологічних проблем як під час воєнної кризи, так і у період поствоєнного відновлення країни.Документ Дослідження особливостей формування фотокаталітичних оксидних покривів на цинкових платформах(Scientific Publishing Center "Sci-conf.com.ua", 2022) Сахненко, Микола Дмитрович; Корогодська, Алла Миколаївна; Степанова, Ірина Ігорівна; Маркова, Наталя Борисівна; Руднєва, Світлана ІванівнаДокумент Електросинтез композиційних покриттів за впливу магнітних полів(Національний технічний університет "Харківський політехнічний інститут", 2022) Сахненко, Микола Дмитрович; Корогодська, Алла Миколаївна; Каракуркчі, Ганна Володимирівна; Горохівська, Наталя ВалентинівнаДокумент Особливості технології КЕП для еко- та енерготехнологій(Національний технічний університет "Харківський політехнічний інститут", 2021) Сахненко, Микола Дмитрович; Каракуркчі, Ганна Володимирівна; Ненастіна, Тетяна Олександрівна; Єрмоленко, Ірина Юріївна; Корогодська, Алла МиколаївнаНа підставі аналізу особливостей формування КЕП показано, що їх одержання та застосування є одним із світових трендів функціональної гальванотехніки та дозволяє вирішити низку практичних задач, зокрема в галузі еко- та енерготехнологій. Осадження поліфункціональних КЕП кобальту з тугоплавкими металами здійснювали із цитратно-пірофосфатних електролітів у гальваностатичному та імпульсному режимах. Одержанні композиційні покриття володіють комплексом підвищених механічних та протикорозійних властивостей, каталітичною та фотокаталітичною активністю, що обумовлює перспективу застосування одержаних тонкоплівкових матеріалів у багатьох галузях промисловості. Показано, що процеси формування таких багатокомпонентних систем є вельми складними, окремим проблемним питанням, що потребує вирішення, є організація технологічного процесу КЕП адаптованого під виробничі потреби. Розроблена схема організації технологічного процесу на основі модульного підходу, що ґрунтується на результатах комплексних досліджень впливу кількісних характеристик робочих електролітів та режимів електролізу на склад та властивості синтезованих покриттів. Узагальнена схема технології КЕП відображає послідовність загальноприйнятих у гальванохімічних виробництвах процесів та операцій з можливістю застосування модульного принципу організації гальванічних ділянок і цехів. Варіативність технологічних схем передбачає гнучке керування складом і властивостями покриттів за рахунок зміни часових та енергетичних характеристик електроосадження при несуттєвому коригуванні кількісного та якісного складу електролітів. Розроблений модульний підхід в організації технологічного процесу може бути використаний як основа для інших електрохімічних технологій синтезу функціональних матеріалів.Документ Електрохімічне осадження сплаву кобальту(Національний технічний університет "Харківський політехнічний інститут", 2021) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна; Корогодська, Алла Миколаївна; Горохівська, Наталя ВалентинівнаЕлектроосадження сплавів кобальту з тугоплавкими металами дозволяє отримувати покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Для осадження якісних покриттів сплавом кобальт-ванадій запропоновано використання цитратного електроліту. Покриття Co-V осаджували на сталеві зразки з цитратного електроліту при температурі 35-40 °С і густині струму 6-12 А/дм2, використовуючи кобальтові розчинні аноди. Вміст ванадію у покритті, осадженого при концентрації ліганда 0,3 моль/дм3, становить 0,1-0,5 мас.%. Підвищення концентрації ліганда до 0,4 моль/дм3 сприяє зв’язуванню кобальту в комплекси, а відповідно, вміст ванадію у покритті зростає до 0,6-1,2 мас.%. Причому тенденція зміни відсотку легувальних елементів з густиною струму зберігається. Осадженні покриття щільні, блискучі, без внутрішніх напружень і тріщин. Запропоновано склади електролітів і режими осадження покриттів Co-V з вмістом ванадію до 1,5 мас.% та виходом за струмом 50 %. Встановлено, що покриття Co-V відрізняються підвищеним вмістом вуглецю і являють собою тверді розчини заміщення, а морфологія поверхні отриманих покриттів істотно залежить від густини струму і змінюється від дрібнокристалічної до глобулярної сфероїдної. Оптимальною густиною струму для отримання якісних покриттів сплавом кобальту в гальваностатичному режимі є ік = 10 А/дм2. Управління складом гальванічних сплавів кобальту в досить широкому діапазоні концентрацій сплавотвірних компонентів досягається варіюванням параметрів електролізу, що дозволяє адаптувати технологію нанесення до потреб сучасного ринку.Документ Окисно-відновні реакції(ФОП Панов А. М., 2021) Волобуєв, Максим Миколайович; Ведь, Марина Віталіївна; Корогодська, Алла Миколаївна; Степанова, Ірина Ігорівна; Проскуріна, Валерія ОлегівнаВикладено теоретичнi вiдомостi одного з базових роздiлiв загальної хiмiї "Окисно-вiдновнi реакцiї" (ОВР): основнi визначення, окисники та вiдновники, визначення коефiцiєнтiв у рiвняннi ОВР та кiлькiснi характеристики ОВР. Для полегшення розумiння складних питань розiбрано приклади розв’язання завдань. Особливу увагу придiлено проведенню дослiдiв в експериментальнiй частинi. Для закрiплення матерiалу наводяться завдання для самостiйного виконання. Розраховано на викладачiв, аспiрантiв i студентiв вищих навчальних закладiв спецiальностей 161 – "Хiмiчнi технологiї та iнженерiя", 162 – "Бiотехнологiї та бiоiнженерiя", 181 – "Харчовi технологiї", 185 – "Нафтогазова iнженерiя та технологiї".Документ Субсолідусна будова системи MgO – FeO – Al₂O₃(Національний технічний університет "Харківський політехнічний інститут", 2021) Борисенко, Оксана Миколаївна; Логвінков, Сергій Михайлович; Шабанова, Галина Миколаївна; Корогодська, Алла Миколаївна; Івашура, Марина Миколаївна; Івашура, Андрій АнатолійовичТрикомпонентні системи складають фізико-хімічну основу більшості вогнетривких матеріалів і аналіз їх субсолідусної будови дозволяє досить точно спрогнозувати області складів з оптимальними властивостями, а також дати рекомендації за технологічними параметрами виробництва, спікання та експлуатації одержуваних матеріалів. В результаті проведеного термодинамічної аналізу системи MgO – FeO – Al₂O₃ встановлено, що розбиття системи на елементарні трикутники зазнає змін в двох температурних інтервалах: I – до температури 1141 К та II – вище температури 1141 К. Розрахунковими методами визначені геометро-топологічні характеристики субсолідусної будови системи MgO – FeO – Al₂O₃: площі елементарних трикутників, ступінь їх асиметрії, площа областей, в яких існують фази, ймовірність існування фаз в системі. Встановлено, що у всьому інтервалі температур існує досить протяжна концентраційна область шпінельних фаз: герциніт (FeAl₂O₄) – благородна шпінель (MgAl₂O₄). Причому, периклаз (MgO) співіснує одночасно з обома шпінелями лише в низькотемпературні області. Це вказує, що під час отримання периклазошпінельних вогнетривів з підвищеною термостійкістю важливим технологічним параметром є швидкість охолодження нижче 1141 К. Для отримання периклазошпінельних вогнетривів з розгалуженою мікротріщинуватою структурою за рахунок відмінностей коефіцієнтів термічного розширення периклаза, герциніта й благородної шпінелі, – найбільш раціональна концентраційна область досліджуваної системи, що є спільною для двох елементарних трикутників (MgO – FeAl₂O₄– MgAl₂O₄ іMgO – FeO – MgAl₂O₄), які існують в різних температурних інтервалах. При високих температурах випалу елементарний трикутник MgO – FeO – MgAl₂O₄ має максимальну площу і мінімальний ступінь асиметрії, а при охолодженні утворюється MgO – FeAl₂O₄– MgAl₂O₄ – досить значна за площею, але має високу ступінь асиметрії. Тому прогнозувати склади шихт для периклазошпінельних вогнетривів слід з високою точністю дозування і зі значним часом гомогенізації компонентів при змішуванні, так як концентраційна область спільна для обох вище зазначених елементарних трикутників значно скорочується. Таким чином, розбиття системиMgO – FeO – Al₂O₃ на елементарні трикутники і аналіз геометро-топологічних характеристик фаз системи дозволило вибрати в досліджуваній системі області складів, що володіють оптимальними властивостями для отримання шпінельвміщуючих матеріалів.Документ Методичні вказівки до лабораторної та самостійної роботи студентів за темою "Хімічний еквівалент"(2020) Волобуєв, Максим Миколайович; Ведь, Марина Віталіївна; Корогодська, Алла Миколаївна; Проскуріна, Валерія Олегівна; Ярошок, Тамара ПетрівнаУ дисципліні "Загальна хімія" не існує неважливих тем, але є найбільш значущі і затребувані у практичній діяльності хіміків і хіміків-технологів. Тема "Хімічний еквівалент. Закон еквівалентів" відноситься саме до таких, оскільки складає підґрунтя для кількісних аналітичних методів визначення речовин і сполук. Зазначений розділ не висвітлюється в шкільній програмі, тому студенти першого курсу всіх спеціальностей потребують детального пояснення термінології та методології визначення еквівалента. В даній методичній розробці зосереджено увагу на теоретичних аспектах і практичному використанні закону еквівалентів.