Кафедра "Загальна та неорганічна хімія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7445

Офіційний сайт кафедри http://web.kpi.kharkov.ua/onch

Від 1948 року, коли кафедра неорганічної хімії злилася з кафедрою загальної хімії, кафедра має назву "Загальна та неорганічна хімія".

Від дня заснування Харківського Технологічного інституту в 1885 році загальноосвітні відділи хімії були представлені однією кафедрою хімії, в яку входили лабораторії неорганічної, органічної і аналітичної хімії. Прикладні хімічні науки читали професор Валерій Олександрович Геміліан, Олександр Павлович Лідов та ін. До 1912 року кафедру очолював професор Іван Павлович Осипов (1855-1918). У 1918 році кафедра хімії розділилася на кафедри неорганічної, органічної, аналітичної і фізичної хімії. Від 1925 року кафедри неорганічної та аналітичної хімії об’єдналися в одну кафедру. У 1930 році, при організації Хіміко-технологічного інституту, кафедра неорганічної та аналітичної хімії продовжувала свою роботу в тому ж складі аж до 1948 року.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 7 кандидатів наук: 4 – технічних, 2 – хімічних, 1– історичних; 6 співробітників мають звання доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 16
  • Ескіз
    Документ
    Визначення констант стійкості комплексів в цитратно-пірофосфатному електоліті для нанесення тернарних сплавів кобальт- молібден- вольфрам
    (Харківський національний університет імені В. Н. Каразіна, 2014) Гапон, Юліана Костянтинівна; Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна
  • Ескіз
    Документ
    Фотокаталітичні властивості електролітичних покриттів на основі кобальту
    (Видавнитво від А до Я, 2021) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна; Зюбанова, Світлана Іванівна
  • Ескіз
    Документ
    Контроль рH розчинів гальванічних ванн
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Овчаренко, Ольга Олександрівна; Ненастіна, Тетяна Олександрівна; Проскуріна, Валерія Олегівна; Школьнікова, Тетяна Василівна
  • Ескіз
    Документ
    Корозійна стійкість покриттів сплавами Fe–Co в нейтральному середовищі
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Проскуріна, Валерія Олегівна; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Овчаренко, Ольга Олександрівна; Степанова, Ірина Ігорівна
  • Ескіз
    Документ
    Особливості електрохімічного осадження композиційних покриттів на основі кобальту
    (ТОВ "Твори", 2020) Ненастіна, Тетяна Олександрівна; Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна
  • Ескіз
    Документ
    Електроліт для нанесення покриттів сплавом кобальт-вольфрам-цирконій
    (ДП "Український інститут інтелектуальної власності", 2019) Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Овчаренко, Ольга Олександрівна; Проскуріна, Валерія Олегівна
    Електроліт для нанесення покриттів сплавом кобальт-вольфрам-цирконій містить кобальту(II) сульфат, цирконію(IV) сульфат, калію пірофосфат, натрію цитрат, натрію сульфат, натрію вольфрамат.
  • Ескіз
    Документ
    Спосіб нанесення покриттів сплавом кобальт-вольфрам-цирконій
    (ДП "Український інститут інтелектуальної власності", 2020) Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Проскуріна, Валерія Олегівна
    Спосіб нанесення покриттів сплавом кобальт-вольфрам-цирконій на метали та сплави шляхом катодного осадження з цитратно-пірофосфатного електроліту, що містить кобальту(ІІ) сульфат, цирконію(ІV) сульфат, натрію вольфрамат, калію пірофосфат, натрію цитрат, натрію сульфат, імпульсним електролізом, імпульсним електролізом у водному розчині. Процес проводять при температурі 20-30 °C імпульсним струмом амплітудою 2-12 А/дм² при тривалості імпульсу 2·10ˉ³-1·10‾¹ с, тривалості паузи 5·10ˉ³-2·10‾¹.
  • Ескіз
    Документ
    Функціональні тернарні сплави кобальту
    (Харківський національний автомобільно-дорожній університет, 2019) Ненастіна, Тетяна Олександрівна; Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна
    Обговорюються функціональні властивості тернарних сплавів Co-Mo-W і Co-Mo-Zr, осаджених у гальваностатичному й імпульсному режимах з пірофосфатно-цитратних електролітів. Електролітичні покриття відрізняються рівномірно розвиненою поверхнею та високим опором корозії. Установлено фізико-механічні властивості покриттів Co-Mo-W.
  • Ескіз
    Документ
    Особливості технології КЕП для еко- та енерготехнологій
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Сахненко, Микола Дмитрович; Каракуркчі, Ганна Володимирівна; Ненастіна, Тетяна Олександрівна; Єрмоленко, Ірина Юріївна; Корогодська, Алла Миколаївна
    На підставі аналізу особливостей формування КЕП показано, що їх одержання та застосування є одним із світових трендів функціональної гальванотехніки та дозволяє вирішити низку практичних задач, зокрема в галузі еко- та енерготехнологій. Осадження поліфункціональних КЕП кобальту з тугоплавкими металами здійснювали із цитратно-пірофосфатних електролітів у гальваностатичному та імпульсному режимах. Одержанні композиційні покриття володіють комплексом підвищених механічних та протикорозійних властивостей, каталітичною та фотокаталітичною активністю, що обумовлює перспективу застосування одержаних тонкоплівкових матеріалів у багатьох галузях промисловості. Показано, що процеси формування таких багатокомпонентних систем є вельми складними, окремим проблемним питанням, що потребує вирішення, є організація технологічного процесу КЕП адаптованого під виробничі потреби. Розроблена схема організації технологічного процесу на основі модульного підходу, що ґрунтується на результатах комплексних досліджень впливу кількісних характеристик робочих електролітів та режимів електролізу на склад та властивості синтезованих покриттів. Узагальнена схема технології КЕП відображає послідовність загальноприйнятих у гальванохімічних виробництвах процесів та операцій з можливістю застосування модульного принципу організації гальванічних ділянок і цехів. Варіативність технологічних схем передбачає гнучке керування складом і властивостями покриттів за рахунок зміни часових та енергетичних характеристик електроосадження при несуттєвому коригуванні кількісного та якісного складу електролітів. Розроблений модульний підхід в організації технологічного процесу може бути використаний як основа для інших електрохімічних технологій синтезу функціональних матеріалів.
  • Ескіз
    Документ
    Електрохімічне осадження сплаву кобальту
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна; Корогодська, Алла Миколаївна; Горохівська, Наталя Валентинівна
    Електроосадження сплавів кобальту з тугоплавкими металами дозволяє отримувати покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Для осадження якісних покриттів сплавом кобальт-ванадій запропоновано використання цитратного електроліту. Покриття Co-V осаджували на сталеві зразки з цитратного електроліту при температурі 35-40 °С і густині струму 6-12 А/дм2, використовуючи кобальтові розчинні аноди. Вміст ванадію у покритті, осадженого при концентрації ліганда 0,3 моль/дм3, становить 0,1-0,5 мас.%. Підвищення концентрації ліганда до 0,4 моль/дм3 сприяє зв’язуванню кобальту в комплекси, а відповідно, вміст ванадію у покритті зростає до 0,6-1,2 мас.%. Причому тенденція зміни відсотку легувальних елементів з густиною струму зберігається. Осадженні покриття щільні, блискучі, без внутрішніх напружень і тріщин. Запропоновано склади електролітів і режими осадження покриттів Co-V з вмістом ванадію до 1,5 мас.% та виходом за струмом 50 %. Встановлено, що покриття Co-V відрізняються підвищеним вмістом вуглецю і являють собою тверді розчини заміщення, а морфологія поверхні отриманих покриттів істотно залежить від густини струму і змінюється від дрібнокристалічної до глобулярної сфероїдної. Оптимальною густиною струму для отримання якісних покриттів сплавом кобальту в гальваностатичному режимі є ік = 10 А/дм2. Управління складом гальванічних сплавів кобальту в досить широкому діапазоні концентрацій сплавотвірних компонентів досягається варіюванням параметрів електролізу, що дозволяє адаптувати технологію нанесення до потреб сучасного ринку.