Кафедра "Загальна та неорганічна хімія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7445

Офіційний сайт кафедри http://web.kpi.kharkov.ua/onch

Від 1948 року, коли кафедра неорганічної хімії злилася з кафедрою загальної хімії, кафедра має назву "Загальна та неорганічна хімія".

Від дня заснування Харківського Технологічного інституту в 1885 році загальноосвітні відділи хімії були представлені однією кафедрою хімії, в яку входили лабораторії неорганічної, органічної і аналітичної хімії. Прикладні хімічні науки читали професор Валерій Олександрович Геміліан, Олександр Павлович Лідов та ін. До 1912 року кафедру очолював професор Іван Павлович Осипов (1855-1918). У 1918 році кафедра хімії розділилася на кафедри неорганічної, органічної, аналітичної і фізичної хімії. Від 1925 року кафедри неорганічної та аналітичної хімії об’єдналися в одну кафедру. У 1930 році, при організації Хіміко-технологічного інституту, кафедра неорганічної та аналітичної хімії продовжувала свою роботу в тому ж складі аж до 1948 року.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 7 кандидатів наук: 4 – технічних, 2 – хімічних, 1– історичних; 6 співробітників мають звання доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    The Role of Electrolysis Regimes in the Formation of Metal and Metal Oxide Coatings from Complex Citrate Electrolytes
    (Київський національний університет технологій та дизайну, 2020) Sachanova, Yu. I.; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu.; Pospelov, A. P.
  • Ескіз
    Документ
    Ternary Fe–Co–Mo alloys as catalytic materials in oxidations reactions of low molecular weight alcohols
    (Київський національний університету технологій та дизайну, 2019) Sachanova, Yu. I.; Sakhnenko, N. D.; Ved, M. V.; Yermolenko, I. Yu.; Volobuyev, M. N.
    The electrocatalytic properties of ternary Fe–Co–Mo alloys synthesized from complex Fe(III) – citrate electrolytes are discussed. The relationship between the composition and surface morphology of electrolytic alloys is considered. It was found that the optimal content of molybdenum in the alloy ranges from 12 to 18 at.%. The increase in the content of this component is not possible, since it can lead to cracking and wear of the surface due to the occurrence of internal stresses. The formation of the globular structure of the alloy Fe–Co–Mo is due to the presence of a refractory metal. The resulting alloys exhibit electrocatalytic activity in the oxidation reactions of methanol and ethanol, as evidenced by the high values of currents in the anodic and cathodic regions of cyclic voltammetric dependencies with maximum values at 0.56 V and 0.6 V, respectively. The course of adsorption of methanol and ethanol on the surface of the alloy Fe–Co–Mo has been established.
  • Ескіз
    Документ
    Composition, Morphology, and Topography of Galvanic Coatings Fe–Co–W and Fe–Co–Mo
    (2017) Yermolenko, I. Yu.; Ved, M. V.; Sakhnenko, N. D.; Sachanova, Yu. I.
    Ternary coatings Fe-Co-W with an iron content of 40–55 at.%, cobalt 39–44 at.%, and tungsten 4–12 at.% and Fe-Co-Mo with an iron content of 40–55 at.%, cobalt 39–44 at.%, and tungsten 4–12 at.% were obtained by galvanostatic and pulse electrolysis on the mild steel substrate from iron(III) citrate-based electrolyte. The influence of electrolysis mode and parameters on composition of deposited alloys was studied. The competing reduction of iron and tungsten in Fe-Co-W coatings as well as the competitive deposition of iron and cobalt in Fe-Co-Mo coatings at various current densities were defined. Simultaneously, the alloy enrichment with molybdenum is more marked at a pulse mode. Atomic force microscope analysis of the Fe-Co-W alloy coating morphology and surface topography indicates their globular structure with spherical grains in the range of 2.5–3.5 μm. The surface of Fe-Co-Mo is characterized by parts of a globular structure with an average conglomerate size of 0.3–0.5 μm and singly located cone-shaped hills with a base diameter of 3 μm. Sites with a developed surface were detected within the same scan area which topography is identical to the crystal lattice of cobalt with the crystalline conglomerate sizes in the range of 0.2–1.75 μm.
  • Ескіз
    Документ
    Internal stresses and magnetic properties of Fe-Co electrolytic coatings
    (Науково-технологічний комплекс "Інститут монокристалів", 2017) Proskurina, V. O.; Yermolenko, I. Yu.; Zyubanova, S. I.; Shipkova, I. G.; Avramenko, B. A.; Sachanova, Yu. I.
    Consideration was given to the effect of electrolysis parameters on the composition and the properties of electrolytic iron-cobalt film coatings obtained from citrate electrolytes. The interconnection between the film composition and the film thickness with its internal stresses and magnetic properties has been studied. It was established that Fe60Co40 alloys show the lowest level of internal stresses for the saturation induction of 1.8 to 2.1 Tl.
  • Ескіз
    Документ
    Composition and morphology of Fe-Co-Mo electrolytic alloys
    (Інститут хімії поверхні ім. О. О. Чуйка, 2016) Sachanova, Yu. I.; Yermolenko, I. Yu.; Sakhnenko, N. D.; Ved, M. V.
  • Ескіз
    Документ
    Functional ternary Fe-Co-Mo(W) coatings
    (Kyiv National University of Technologies and Design, 2017) Yermolenko, I. Yu.; Ved, M. V.; Sakhnenko, N. D.; Sachanova, Yu. I.; Lagdan, I. V.; Proskurina, V. O.
    The researchers and technologists increased interest to multicomponent galvanic alloys of iron triad metals with refractory elements (W, Mo etc.) [1, 2] is caused by several reasons. The main is creation new technology of coatings with a unique set of functional properties such as wear and corrosion resistance, increased catalytic activity and microhardness, magnetic properties, and others [3, 4]. This allows replacing toxic chromium-plating, to create effective catalytic materials, more available compared to traditional platinum based systems [5] and to obtain new soft magnetic films for the production of magnetic head elements for recording and reproducing information [6]. In this connection, the electrochemical methods of deposition are considered to be a competitive alternative to the physical methods of production [7] due to the possibility of flexible process control and monitoring. This enables the formation of coatings of a varying composition and structure, which is a key factor for production of the materials with specified functional properties. Many scientific papers delve into the electrodeposition of binary [8, 9] and ternary [10] iron and cobalt alloys with refractory components. In [11], Fe-W and Fe-W-P coatings with high wear resistance and corrosion resistance were obtained from electrolytes of different composition. It is noted that friction coefficient of amorphous ternary Fe-W-P alloys is lower than that of binary Fe-W coatings. The authors of [12] emphasize the increased wear resistance of Fe-W, Ni-W and Co-W coatings obtained from citrate and citrate-ammonia electrolytes at low bulk current densities. The molybdenum incorporation into cobalt deposits leads to a significant decrease in the coercive force and an increase in the saturation magnetization of the materials [13]. It is shown [14] that the molybdenum content in the alloy increases as the potential shifts toward negative values. The structure of deposits varies from close-packed hexagonal to mixed crystalline and amorphous with increasing current density. depends on coatings thickness: thin films have an amorphous structure. The great practical interest for works [15, 16] are due to electrosynthesis of ternary Fe-Mo-W alloys with increased physic-mechanical and corrosion protective properties for hardening machine parts. Obviously, in each individual case the formation of the coating depends on the qualitative and quantitative composition of the electrolyte and on the synthesis conditions. It should be noted the modes and parameters of the electrolysis predetermine in a particular way the concentration ratio of the alloy components and phase composition of the coatings [17]. Accordingly, the functional properties of coatings depended on the composition and structure can be controlled by deposition conditions. It should be noted that most published results covers to binary alloys Fe (Ni, Co) -Mo (W). Thereby it is relevant to study the process of electrosynthesis of ternary alloys and to analyze their properties.