Кафедра "Загальна та неорганічна хімія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7445

Офіційний сайт кафедри http://web.kpi.kharkov.ua/onch

Від 1948 року, коли кафедра неорганічної хімії злилася з кафедрою загальної хімії, кафедра має назву "Загальна та неорганічна хімія".

Від дня заснування Харківського Технологічного інституту в 1885 році загальноосвітні відділи хімії були представлені однією кафедрою хімії, в яку входили лабораторії неорганічної, органічної і аналітичної хімії. Прикладні хімічні науки читали професор Валерій Олександрович Геміліан, Олександр Павлович Лідов та ін. До 1912 року кафедру очолював професор Іван Павлович Осипов (1855-1918). У 1918 році кафедра хімії розділилася на кафедри неорганічної, органічної, аналітичної і фізичної хімії. Від 1925 року кафедри неорганічної та аналітичної хімії об’єдналися в одну кафедру. У 1930 році, при організації Хіміко-технологічного інституту, кафедра неорганічної та аналітичної хімії продовжувала свою роботу в тому ж складі аж до 1948 року.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 7 кандидатів наук: 4 – технічних, 2 – хімічних, 1– історичних; 6 співробітників мають звання доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Субсолідусна будова системи MgO – FeO – Al₂O₃
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Борисенко, Оксана Миколаївна; Логвінков, Сергій Михайлович; Шабанова, Галина Миколаївна; Корогодська, Алла Миколаївна; Івашура, Марина Миколаївна; Івашура, Андрій Анатолійович
    Трикомпонентні системи складають фізико-хімічну основу більшості вогнетривких матеріалів і аналіз їх субсолідусної будови дозволяє досить точно спрогнозувати області складів з оптимальними властивостями, а також дати рекомендації за технологічними параметрами виробництва, спікання та експлуатації одержуваних матеріалів. В результаті проведеного термодинамічної аналізу системи MgO – FeO – Al₂O₃ встановлено, що розбиття системи на елементарні трикутники зазнає змін в двох температурних інтервалах: I – до температури 1141 К та II – вище температури 1141 К. Розрахунковими методами визначені геометро-топологічні характеристики субсолідусної будови системи MgO – FeO – Al₂O₃: площі елементарних трикутників, ступінь їх асиметрії, площа областей, в яких існують фази, ймовірність існування фаз в системі. Встановлено, що у всьому інтервалі температур існує досить протяжна концентраційна область шпінельних фаз: герциніт (FeAl₂O₄) – благородна шпінель (MgAl₂O₄). Причому, периклаз (MgO) співіснує одночасно з обома шпінелями лише в низькотемпературні області. Це вказує, що під час отримання периклазошпінельних вогнетривів з підвищеною термостійкістю важливим технологічним параметром є швидкість охолодження нижче 1141 К. Для отримання периклазошпінельних вогнетривів з розгалуженою мікротріщинуватою структурою за рахунок відмінностей коефіцієнтів термічного розширення периклаза, герциніта й благородної шпінелі, – найбільш раціональна концентраційна область досліджуваної системи, що є спільною для двох елементарних трикутників (MgO – FeAl₂O₄– MgAl₂O₄ іMgO – FeO – MgAl₂O₄), які існують в різних температурних інтервалах. При високих температурах випалу елементарний трикутник MgO – FeO – MgAl₂O₄ має максимальну площу і мінімальний ступінь асиметрії, а при охолодженні утворюється MgO – FeAl₂O₄– MgAl₂O₄ – досить значна за площею, але має високу ступінь асиметрії. Тому прогнозувати склади шихт для периклазошпінельних вогнетривів слід з високою точністю дозування і зі значним часом гомогенізації компонентів при змішуванні, так як концентраційна область спільна для обох вище зазначених елементарних трикутників значно скорочується. Таким чином, розбиття системиMgO – FeO – Al₂O₃ на елементарні трикутники і аналіз геометро-топологічних характеристик фаз системи дозволило вибрати в досліджуваній системі області складів, що володіють оптимальними властивостями для отримання шпінельвміщуючих матеріалів.