05.13.06 "Інформаційні технології"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17403
Переглянути
1 результатів
Результати пошуку
Документ Модели, методы и информационные технологии разработки нечеткой экспертной системы диагностики финансового состояния предприятия(НТУ "ХПИ", 2016) Головко, Виталий АлексеевичДиссертация на соискание ученой степени кандидата технических наук по специальности 05.13.06 – информационные технологии. – Национальный технический университет "Харьковский политехнический институт", г. Харьков, 2016. В диссертации рассматривается важная научно-практическая задача идентификации финансового состояния предприятия в условиях нечетких данных о значениях контролируемых финансовых показателей. На основе анализа традиционных методов оценки финансового состояния предприятия выявлены их недостатки, из которых самый существенный – недостаточный учет неопределенности исходных данных. В связи с этим на основе проведенных теоретических исследований усовершенствованы методы многомерного дискриминантного анализа, кластерного и регрессионного анализов для случая, когда исходные данные – нечеткие числа с известными функциями принадлежности. В работе показано, что перечисленные методы идентификации финансового состояния предприятия дают приемлемые результаты только в ситуациях с достаточно большим объемом исходных данных. В реальных задачах диагностики банкротства это требование не выполняется. Поэтому предложен иной метод, использующий нечеткую экспертную систему. При этом установлена неэффективность продукционных технологий логического вывода и предложена процедура построения диагностической экспертной системы обработки информации, объединяющей регрессионный подход и байесов механизм логического вывода. Для расчета регрессионных коэффициентов использован метод попарных сравнений. Результат работы экспертной системы – распределение вероятностей возможных состояний предприятия. На основе разработанных методов построена информационная технология диагностирования финансового состояния предприятия, которая показала более раннее выявление ухудшения финансового состояния заемщиков по сравнению со старой технологией. Точность диагностирования ухудшения финансового состояния предприятия, которое приводит к неприемлемости заемщика для банка, выросла на 27,2 %. Полученные результаты позволили принять своевременные управленческие решения и предотвратить увеличение проблемной задолженности в кредитном портфеле банка.