05.13.06 "Інформаційні технології"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17403

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Методи інтелектуальної обробки просторових даних в геоінформаційних системах екологічного моніторингу
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Дудінова, Ольга Богданівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.13.06 "Інформаційні технології". – Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2021. У дисертаційній роботі запропоновано рішення актуальної науково-практичної задачі розробки методів інтелектуальної обробки просторових даних в геоінформаційних системах екологічного моніторингу, які дозволяють підвищити якість формування ландшафтних цифрових зображень для подальшого аналізу стану зон моніторингу. Обʼєктом дослідження в роботі є процеси обробки та аналізу цифрових зображень обʼєктів ландшафтних та промислових зон, що аналізуються в ГІС екологічного моніторингу, предметом дослідження – методи інтелектуальної обробки просторових даних та формування ландшафтних цифрових зображень в ГІС екологічного моніторингу. Методи дослідження основані на використанні: теорії розпізнавання образів та обробки зображень (для розробки методів попередньої обробки просторових даних та сегментації зображень); теорії штучних нейронних мереж (для фільтрації та відновлення зашумлених або викривлених зображень контрольованих обʼєктів моніторингу) фрактального аналізу та генетичної оптимізації (для розробки методу стиснення зображень в ГІС); марковської моделі растрових зображень (для компʼютерного аналізу просторових зображень обʼєктів ландшафтних та промислових зон), теорії імітаційного моделювання (для експериментального моделювання запропонованих методів). В роботі запропоновано: метод категорійної класифікації обʼєктів в задачах компʼютерного аналізу аерознімків, де, на відміну від існуючих, використано комбіновану базу прототипів, яка розширюється за допомогою простих критеріїв (кольору, текстури, контурів), що дозволяє спростити задачу розпізнавання обʼєктів зон моніторингу; метод нейромережевої обробки зашумлених цифрових зображень, які можуть містити викривлені фрагменти, який, на відміну від існуючих, заснований на використанні нейроеволюційної моделі шумопригнічуючих автоенкодерів з поліпшеними апроксимуючими властивостями, що дає можливість його практичного використання для обробки даних в геоінформаційних системах за умов наявності суттєвих шумів; метод сегментації та виділення контурів просторових цифрових зображень, оснований на використанні марковських моделей, який, на відміну від існуючих, дозволяє враховувати характер околу аналізованого пікселя і задавати залежність між класами сусідніх пікселів, що сприяє підвищенню якості детектування контурів обʼєктів зон моніторингу; метод нейромережевої обробки зашумлених картографічних даних геоінформаційної системи, який, на відміну від існуючих, передбачає реалізацію на паралельних обчислювальних структурах процедур попередньої фільтрації напівтонових просторових зображень та завадостійкого детектування контурів обʼєктів зображень; метод корекції кольорових картографічних зображень з метою поліпшення їх якості, яке здійснюється за рахунок зміни яскравісної компоненти зображення в кольоровому просторі HSI за допомогою гамма-корекції; метод стиснення растрових даних, де використовується комбіноване застосування генетичної оптимізації та фрактальних методів компресії просторових зображень, представлених за допомогою квадродерев, що дозволяє його ефективно застосовувати для обробки та архівації даних в геоінформаційних системах. Практичними результатами використання проведених досліджень є алгоритми, прикладні програми та інформаційна технологія, що реалізують розроблені методи інтелектуальної обробки і цифрових зображень в ГІС екологічного моніторингу. В результаті їх впровадження передбачається розробити інформаційну технологію інтелектуальної обробки цифрових зображень (ІТІОЦЗ) в ГІС екологічного моніторингу ландшафтних обʼєктів України, що обʼєднує сукупність моделей і методів, зокрема: проекційні рекурентні методи навчання нейронних мереж, які використовуються для вирішення завдань обробки зображень; алгоритми навчання ШНМ на основі асиметричних функціоналів якості, що дозволяють отримувати якісні моделі в умовах негаусовскіх перешкод; ієрархічні ШНМ для стиснення та фільтрації зображень, що дозволяють значно зменшити апаратні витрати і обсяг памʼяті для зберігання зображень, а також зменшити час їх обробки; еволюціонуючий шумопригнічуючий автоенкодер (ЕШАЕ), призначений для фільтраціїї шумів і відновлення спотворених фрагментів в цифрових зображеннях в ГІС екологічного моніторингу; гібридний підхід до інтелектуальної обробки цифрових зображень, який обʼєднує переваги відомих і запропонованих методів. Очікуваний ефект від впровадження результатів дисертації позначиться на підвищенні якості та оперативності обробки цифрових зображень в ГІС екологічного моніторингу ландшафтних обʼєктів України, інтегрованій в Єдину державну систему моніторингу навколишнього середовища і природних ресурсів. Отримані результати можуть бути адаптовані для широкого класу прикладних завдань обробки, стиснення і класифікації зображень в ГІС, що вимагають обробки структурованої інформації високого рівня (зокрема розпізнавання і індексації зображень). До таких завдань слід, зокрема, віднести розпізнавання на знімках доріг і перехресть, необхідне для складання картографічної бази даних ГІС та здійснення екологічного контролю в промислових регіонах з високим ризиком порушень екології. На основі результатів проекту можуть бути створені курси лекцій і навчальні посібники з інтелектуальних методів обробки цифрових зображень, методів нейромережевого моделювання та методів еволюційних обчислень для профільних вищих навчальних закладів України. Результати дисертаційної роботи впроваджені у ПАТ "Сєвєродонецький ОРГХІМ" (м. Сєвєродонецьк)". Матеріали дисертації достатньо повно викладено у 18 наукових роботах, у тому числі: 7 статтях, які зазначені в переліку фахових видань України з технічних наук (з них одна наукова стаття у Scopus) та 11 тезах доповідей міжнародних конференцій.
  • Ескіз
    Документ
    Методи інтелектуальної обробки просторових даних в геоінформаційних системах екологічного моніторингу
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Дудінова, Ольга Богданівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.13.06 – інформаційні технології. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. У дисертаційній роботі запропоновано вирішення актуальної науково-практичної задачі розробки методів інтелектуальної обробки просторових даних в геоінформаційних системах екологічного моніторингу, які дозволяють підвищити якість формування ландшафтних цифрових зображень для подальшого аналізу стану зон моніторингу. В роботі запропоновано: метод категорійної класифікації об’єктів в задачах комп’ютерного аналізу аерознімків; метод нейромережевої обробки зашумлених цифрових зображень, які можуть містити викривлені фрагменти, заснований на використанні нейроеволюційної моделі шумопригнічуючих автоенкодерів; метод сегментації та виділення контурів просторових цифрових зображень, заснований на використанні марковських моделей, який дозволяє враховувати характер околу аналізованого пікселя і задавати залежність між класами сусідніх пікселів; метод нейромережевої обробки зашумлених картографічних даних ГІС, який передбачає реалізацію на паралельних обчислювальних структурах процедур попередньої фільтрації напівтонових просторових зображень та завадостійкого детектування контурів об’єктів зображень; метод корекції кольорових картографічних зображень з метою поліпшення їх якості, яке здійснюється за допомогою гамма-корекції; метод стиснення растрових даних, де використовується комбіноване застосування генетичної оптимізації та фрактальних методів компресії просторових зображень. Практичними результатами використання проведених досліджень є алгоритми, прикладні програми та інформаційна технологія, що реалізують розроблені методи інтелектуальної обробки цифрових зображень в ГІС екологічного моніторингу.