Вісник № 44
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/39511
Переглянути
Документ Інтелектуальний аналіз пропозицій товарів на основі контекстних рекомендацій(НТУ "ХПІ", 2018) Чередніченко, Ольга Юріївна; Іващенко, Оксана Віталіївна; Гонтар, Юлія Миколаївна; Ворона, Борис МихайловичІнтернет-технології є невід’ємною складовою відносин, які виникають у сучасному суспільстві. Через швидке впровадження та зручність електронних майданчиків, прогнозовано зростає попит на ринку IT-продуктів для рекомендаційних систем. У статті розглянуті різноманітні обмеження поточних рекомендаційних методів та обговорено можливі розширення, що можуть покращити рекомендаційні можливості та зробити їх більш ціностними для широкого кола додатків. Ці розширення включають покращення сприймання користувачів та елементів, включення контекстної інформації в рекомендаційний процес, підтримка багатокритеріальних рейтингів та надання більш гнучких і водночас менш нав’язливих типів рекомендацій. Важливу роль відіграє інтеграція діяльності, якаполягає у підтримці усіх аспектів електронної комерції від виконання транзакцій до підтримки мережі постачання, що дає змогу спростити документообіг та збільшити вигоду учасників.Направленість даної розробки – проводити аналітичну обробку даних торгівельних майданчиків, на основі контекстних рекомендацій, об’єктивний аналіз та здійснювати актуальний моніторинг ділової активності на торговельному майданчику. Розглянуто задачу складання різноманітних аналітичних звітів, що дозволить учасникам ринку IT-продуктів для рекомендаційних систем об’єктивно і своєчасно аналізувати розвиток ситуації на ринку, виявляти існуючі та прогнозні тенденції. Побудова сфери надання інтелектуальних аналітичних послуг здійснюється для залучення додаткових учасників, або якісно нових гравців ринку та одержання додаткового прибутку.Для обробки доцільно використовувати принципово нові технології Data Mining, що дозволить отримати якісно цінні дані. Data Mining – це технологія, призначена для пошуку у великих інформаційних масивах неочевидних даних, об’єктивних, корисних на практиці закономірностей.