05.11.13 "Прилади і методи контролю та визначення складу речовин"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17000
Переглянути
4 результатів
Результати пошуку
Документ Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів(Національний технічний університет "Харківський політехнічний інститут", 2019) Шібан, ТамерУ дисертаційній роботі представлені науково-технічні результати дослідження електромагнітного багатопараметрового перетворювача для визначення параметрів циліндричних металевих виробів, принцип роботи якого ґрунтується на виділенні амплітуди та фази просторових гармонік неоднорідного магнітного поля, представленого у вигляді ряду Фур'є. Об'єкт дослідження достатньо повно описаний в науковій літературі. Показано, що подальше збільшення інформаційних параметрів, які контролюються одним перетворювачем може здійснюватися декількома шляхами. Наприклад, використання для живлення перетворювача струмом різних частот з подальшою фільтрацією і виділенням амплітуди і фази на кожній частоті. Така реалізація багатопараметрових датчиків досить складна і не завжди відображає справжню картину процесів, що відбуваються в об'єкті контролю через різну глибину проникнення поля (скін-ефект). Показано, що застосування результатів дослідження дає можливість отримати більш повну інформацію про об'єкт контролю, яка не могла бути отримана при використанні традиційних методів. Тому, застосування розробленого методу, є перспективним. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля для провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Вирішена просторова задача розподілу змінного в часі магнітного поля і отримані вирази, за якими можна обчислити функції для будь-якої просторової гармоніки, за якими можна скласти картину розподілу поля в будь-який області (всередині виробу, між виробом і провідником зі струмом, а також поза цим провідником). Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника (або полюса з кінцевими кутовими розмірами). Проведено облік товщини стрічки полюса з сумарним струмом, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ на окружності радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали відмінність між розрахунковими і експериментально отриманими значеннями ЕРС вихідного сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Запропоновано також прийоми і способи виділення необхідних просторових гармонік і приглушення гармонік з високими номерами. Останнє дозволяє знизити вплив вищих просторових гармонік до 1%. Для виключення з картини просторового розподілу поля парних або непарних гармонік запропоновано використовувати систему провідників з однаковими і протилежними напрямками струмів в них. Отримано універсальні функції перетворення для амплітуди і фази n-ї складової гармоніки для перетворювача. Розроблено метод спільного контролю електричних (σ), магнітних (μr) і геометричних (а) параметрів циліндричних виробів, на основі перетворювача з одним намагнічувальним полюсом при використанні 1-ї і 2-ї просторових гармонік, який дозволяє однозначно вирішувати задачу багатопараметрового контролю для широкого сортименту виробів, різних конструкцій і режимів роботи перетворювачів. Розроблено метод на основі електромагнітного перетворювача з двома намагнічувальними полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів. Визначено чутливості методу і знайдено раціональні режими роботи перетворювача. Виконано розрахунок і показано вплив вищих гармонік поля на вихідні сигнали перетворювача. Так, наприклад, для перетворювача з одним збуджувальним провідником, відкидання 3-ї гармоніки призведе до похибки розрахунку результуючої ЕРС, яка дорівнює 5%, а для перетворювача з двома збуджувальними провідниками, при відкиданні 5-ї гармоніки, становить 1,5%. Розроблено макет лабораторної установки з електромагнітним перетворювачем з просторово-періодичною структурою поля і проведені експериментальні дослідження по визначенню μr σ, і а з імітаційними зразками різного сортаменту для підтвердження адекватності розробленого методу. Наведена конструкція електромагнітного перетворювача з двома збуджувальними полюсами і різним напрямком намагнічувального струму з використанням амплітуди 1-ї і 3-ї просторових гармонік і фази 1-ї гармоніки. Оскільки безпосередньо оцінити похибки контролю μr, σ і а для розробленого багатопараметрового перетворювача досить складно, в роботі проведено вимірювання цих же параметрів контрольними методами. Так для визначення а досліджуваного зразка використовувався мікрометр з діапазоном вимірювання діаметра (50 ± 0,01) мм, для визначення σ циліндричного зразка використовувався контактний електричний метод на базі потенціометра постійного струму Р363-3, з класом точності 0,005, а для визначення μr використовувався метод амперметра - вольтметра для кільцевого зразка. Показано, що застосування розробленого перетворювача дозволяє отримувати найбільш повну інформацію про стан повітряних ліній електропередач, тобто визначати μr, σ, і a циліндричних дротів, а також корельованих з ними механічним навантаженням, температурою, величиною струму, що протікає в лінії та визначення питомих електричних втрат при діагностиці стану повітряних ліній електропередач, що підтверджується актом впровадження від 18.12.2015р (договір № 377551 від 27.07.2015р між НТУ «ХПІ» та ПАТ «Укргідропроект» м. Харків).Документ Електромагнітний багатопараметровий перетворювач з просторово-періодичним полем для контролю циліндричних виробів(Національний технічний університет "Харківський політехнічний інститут", 2019) Шібан, ТамерДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) зі спеціальності 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. В роботі розроблена фізико-математична модель електромагнітного перетворювача з неоднорідним розподілом електромагнітного поля провідника зі струмом, розташованого уздовж бічної поверхні циліндричного виробу на деякій відстані d від центра металевого циліндра радіуса a. Отримано математичні вирази для визначення напруженості магнітного поля для r-ї і φ-ї складової, створюваного струмом одного провідника або полюса. Проведено облік товщини стрічки полюса, який призводить до заміни в формулах для напруженості поля значення r на деякий ефективний радіус. Отримано математичні вирази для амплітуди і фази n-ї просторової гармоніки сигналу перетворювача, що наводиться в вимірювальних обмотках, розташованих уздовж поверхні циліндричного об'єкту контролю з кутовою координатою φ по колу радіуса d. Для підтвердження адекватності запропонованої моделі перетворювача проведені експерименти, які показали хороший збіг між розрахунковими і експериментальними значеннями ЕРС сигналу перетворювача. Так, наприклад, для вимірювальних обмоток, з кутовими координатами φ = 0° і φ = 180° розбіжність значень напруг склала не більше 5%, а для обмоток з розташуванням по φ = 30°, 60°, 300° і 330° розбіжність склала не більше 10%. Розроблено метод на основі електромагнітного перетворювача з двома полюсами і різним напрямком струму. Отримано універсальні функції перетворення з використанням 1-ї і 3-ї просторових гармонік, а також запропонований алгоритм реалізації багатопараметрового контролю параметрів циліндричних виробів.Документ Повышение помехоустойчивости феррозондовых дефектоскопов к магнитным полям помех(Восточноукраинский национальный университет им. В. Даля, 2015) Безкоровайный, Владимир СергеевичДиссертация на соискание ученой степени кандидата технических наук по специальности 05.11.13 – Приборы и методы контроля и определение состава веществ. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2015. В диссертационной работе решается проблема повышения помехоустойчивости феррозондовых дефектоскопов к магнитным полям помех, вызванных конечными размерами контролируемых деталей, их ступенчатыми и галтельными переходами, магнитной неоднородностью ферромагнитного материала. Анализ существующих методов подавления помехи, вызванной сторонним магнитным полем, показал, что основным способом устранения помехи в настоящее время является включение обмоток феррозондов по градиентометрической схеме. Однако этот метод не свободен от недостатков, так его эффективность низка при высоком уровне градиента поля помехи и коэффициент преобразования феррозонда в большей степени зависит от геометрических параметров магнитной системы и расположения полуэлементов феррозонда относительно дефекта. Не свободен от недостатков метод экранирования феррозонда, так как экран значительно увеличивает размеры преобразователя, что затрудняет его использование на ступенчатой поверхности детали. Обзор методов и способов подавления помехи показал, что наиболее эффективным является метод, основанный на использовании двух феррозондов, один из которых является измерительным, а второй – компенсационным. При этом необходимо, чтобы измерительный феррозонд имел достаточную чувствительность, как к магнитному полю дефекта, так и к полю помехи, а компенсационный феррозонд имел высокую чувствительность только к полю помехи и практически не реагировал на поле дефекта. Для теоретического обоснования эффективности предлагаемого метода была разработана математическая модель поля вектора намагниченности, как в области всей детали, так и в локальной области расположения дефекта. Напряженность магнитного поля в сердечниках феррозонда, индуцированного намагниченностью детали и дефекта, рассчитывается путем применения модифицированной теоремы о взаимности К. М. Поливанова. Сердечники измерительного и компенсационного феррозонда являлись полузамкнутыми U-образной формы. Компенсационный феррозонд имеет перемычку непосредственно над дефектом и шунтирует его магнитное поле. Предложен метод расчета магнитного поля помехи индуцированного намагниченной деталью, основанный на решении интегрального уравнения с использованием линейной аппроксимации функции намагничивания, что сокращает порядок системы алгебраических уравнений. Предложен метод расчета коэффициента передачи мостовой электрической схемы феррозонда, при которой уменьшается вдвое число обмоток и создается возможность получения увеличенного его коэффициента передачи за счет явления параметрического резонанса, упрощается балансировка обмоток феррозонда.Документ Підвищення перешкодостійкості ферозондових дефектоскопів до магнітних полів перешкод(Друкарня "Фінвей", 2015) Безкоровайний, Володимир СергійовичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 – Прилади і методи контролю та визначення складу речовин. – Національний технічний університет "Харківський політехнічний інститут" Харків, 2015. У дисертаційній роботі вирішується проблема підвищення перешкодостійкості ферозондових дефектоскопів до магнітних полів перешкод, викликаних кінцевими розмірами контрольованих деталей, їх ступінчастими ї галтельними переходами, магнітною неоднорідністю феромагнітного матеріалу. Запропоновано метод розрахунку магнітного поля перешкоди, індукованого намагніченою деталлю, заснований на вирішенні інтегрального рівняння з використанням лінійної апроксимації функції намагнічування, що скорочує порядок системи алгебраїчних рівнянь. У якості вимірювального перетворювача перешкодостійкого ферозондового дефектоскопа пропонується використовувати блок магнітної системи, що складається з двох ідентичних ферозондів з U-подібними осердям. Результати численних і натурних експериментів показали, що магнітний потік в осерді ферозонду з U-подібним осердям, з перемичкою, розташованою безпосередньо над дефектом, в 8-12 разів менше потоку вимірювального (основного) ферозонду.