Кафедра "Парогенераторобудування"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4698
Офіційний сайт кафедри http://web.kpi.kharkov.ua/pgs
Від 1938 року кафедра має назву "Парогенераторобудування", первісна назва – кафедра парових турбін.
Кафедра парових турбін у 1930 році виділилися як самостійна зі складу кафедри теплотехніки, на якій професори Георгій Федорович Бураков, Петро Матвійович Мухачов і С. Н. Семихватов забезпечували підготовку інженерів парових котлів. Уперше курс парових котлів почав читати в інституті в 1888 році професор Олексій Іванович Предтеченський.
Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидати технічних наук; 1 співробітник має звання професора, 4 – доцента.
Переглянути
Документ Classification of nuclear NPP reactors(Національний технічний університет "Харківський політехнічний інститут", 2023) Yefimov, Olexander Vyacheslavovych; Tiutiunyk, Larysa Ivanivna; Kavertsev, Valery Leonidovich; Harkusha, Tetyana Anatoliivna; Sydorkin, Igor DmytrovychThe article deals with the classification of NPP nuclear reactors. A nuclear reactor is a device in which a chain reaction of nuclear fission of heavy elements uranium, plutonium, and thorium takes place, which controls and maintains itself. The possibility of such a reaction is ensured by the fact that each act of nuclear fission produces two or three neutrons capable of causing the fission of other nuclear fuel nuclei loaded into the reactor. In the reactor, simultaneously with the nuclear fission process, there is always, firstly, the absorption of neutrons by materials located in the active zone, and, secondly, the outflow of neutrons from the active zone of the reactor. These two factors make it possible to regulate the nuclear fission process so that the number of neutrons in the active zone and the number of acts of fission per unit of time are constant. Nuclear reactors are very diverse in terms of their parameters, purpose, design and a number of other features. Nuclear reactors can be classified according to the following main distinguishing features: the amount of neutron energy that causes nuclear fission; by type of retarder; according to the type and parameters of the coolant; by constructive execution; according to the compositional decision; by appointment. At nuclear power plants, nuclear reactors are used to generate electrical and thermal energy. At nuclear power plants, they are used to generate thermal energy for the purpose of heating and industrial heat supply. In ship power plants, they are used as sources of thermal, mechanical and electrical energy.Документ Computer-integrated components of the automated decision-making support system for operational and maintenance personnel of nuclear power plant units with WWER(Національний технічний університет "Харківський політехнічний інститут", 2019) Yefimov, Аleksandr Vyacheslavovych; Yesypenko, Tetyana Oleksiivna; Harkusha, Tetyana Anatoliivna; Kavertsev, Valery Leonidovich ; Berkutova, Tetyana IvanivnaThe purpose of this article is to describe the results of the research aimed at developing computer-integrated components of one of the ADMSS variants for operational and maintenance personnel of NPP units according to the criterion of technical and economic efficiency, taking into account the diagnostics of the technical equipment state based on the simulation model describing by means of up-to-date mathematical methods the technological processes in the main and auxiliary equipment of power units using up-to-date mathematical methods at the level of detailing, corresponding to their principle and deployed thermal schemes. The results of studies aimed at the development of computer-integrated components of the automated decision-making support system (ADMSS) for operational and maintenance personnel of NPP units by the criterion of technical and economic efficiency, taking into account the diagnostics of the state of the power unit equipment, are presented. The general structure of the software package interaction for the analysis of the performance and parameter diagnostics of NPP units with WWER has been developed. When creating the software package, the integrated programming environment Microsoft Visual Studios was used. The structure of the program block for the parameter diagnostics of the equipment of nuclear power units is presented. The main types of problems arising during the operation of NPP units with WWER, that can be solved with the help of the developed ADMSS are considered, and a form for presenting the results to the operational and maintenance personnel of power units is proposed. Developed on the basis of the described computer-integrated components, the automated decision-making support system for the operational and maintenance personnel of NPP power units can be used to solve a wide range of problems arising in the practice of short-, medium- and long-term control of the operation modes of power unit systems and equipment, including obtaining operational (energy) characteristics of power unit systems and equipment, optimizing operation modes and parameters, diagnosing and forecasting technical state of power equipment, predicting the amount of electrical and thermal energy generated by a power unit, as well as optimizing NPP repair cycles.Документ Methods and approaches to simulation, diagnostics, forecasting equipment state and optimization of robot modes of NPP power units(Національний технічний університет "Харківський політехнічний інститут", 2021) Yefimov, Olexander Vyacheslavovych; Kavertsev, Valery Leonidovich; Potanina, Tetiana Volodymyrivna; Harkusha, Tetyana Anatoliivna; Tiutiunyk, Larysa Ivanivna; Motovilnik, Anastasiia VadimovnaNuclear power plants are the basis of energy in many countries of the world, which determines the pace of their economic development. At the same time, they as complex technological systems are objects of the increased technogenic danger. Therefore, ways to increase the reliability, safety and efficiency of NPP power equipment have already been developed and continue to be developed, which are largely based on diagnostic procedures. During the operation of power equipment, especially during its long period, its technical characteristics, and, consequently, the parameters of technological processes, change under the influence of external factors and as a result of wear, or even destruction, of individual structural elements. Changing the characteristics of the equipment usually leads to a decrease in the level of adequacy and to the loss of conformity of mathematical expressions in the models of the content of the processes described by them.The materials of the article consider the identification of mathematical models of NPP power unit equipment in the process of parametric diagnostics. Ways to increase the reliability, safety and efficiency of NPP power equipment have been developed and continue to be developed, which are largely based on diagnostic procedures. The use of the iterative process to find the values of the identified parameters can be used to identify mathematical models of technological processes in NPP power equipment, which increases the adequacy of models and the reliability of diagnostic conclusions in solving parametric diagnostic problems.