Кафедра "Інтегровані технології, процеси і апарати"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1789
Офіційний сайт кафедри http://web.kpi.kharkov.ua/itpa
Від 2005 року кафедра має назву "Інтегровані технології, процеси і апарати", первісна назва – кафедра загальної хімічної технології, процесів і апаратів.
Кафедра загальної хімічної технології, процесів і апаратів створена в 1933 році, а очолив її професор Максим Ісидорович Некрич, який у свій час закінчив Паризький університет – Сорбонну (Франція). Але ще в 1927 році професор М. Д. Зуєв починає читати студентам курс загальної хімічної технології, доповнюючи його розрахунком процесів і апаратів, а також контрольно-вимірювальних приладів. У 1964 році від кафедри загальної хімічної технології, процесів і апаратів відокремилася нова кафедра – "Автоматизації хімічних виробництв".
Від 1977 року кафедру очолював Леонід Леонідович Товажнянський, кандидат технічних наук, доцент, на той час проректор ХПІ, а згодом – доктор технічних наук, професор, Заслужений діяч науки і техніки України, Заслужений працівник вищої школи, лауреат Державної премії, Дійсний член Академії наук вищої школи України, ректор НТУ «ХПІ». Виконувачем обов’язків завідувача кафедри у період з 1977 по 1981 роки був І. С. Чернишов.
Від 1 лютого 2018-го року кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 12 кандидатів технічних наук; 2 співробітника мають звання професора, 11 – доцента.
Переглянути
Результати пошуку
Документ Енерго-, ресурсозберігаюча інтегрована технологія карбонізації у виробництві соди(Національний технічний університет "Харківський політехнічний інститут", 2015) Каратєєва, О. В.; Панасенко, Володимир Олексійович; Ведь, Валерій ЄвгеновичДокумент Теплове управління механохімічною реакцією(Національний технічний університет "Харківський політехнічний інститут", 2021) Толчинський, Юрій Аврамович; Ведь, Валерій Євгенович; Рофе-Бекетова, І. І.Механохімія вивчає та пояснює процеси хімічних та фізико-хімічних перетворень, які породжуються механічним впливом на речовину. При здійсненні глибоких механохімічних перетворень, як правило, необхідно передати твердим реагентам порцію енергії, порівняну до енергії міжатомних зв’язків. Для цього використовуються різноманітні машини та апарати, такі як екструдери, в яких механічна енергія постійно передається подрібненому матеріалу. У статті розглянута взаємодія двох реагентів у найпростішій хімічній реакції у стані суміші часток двох сортів, що відбувається при стисненні часток, що мають широкувату неправильну форму та стикаються одна з одною, утворюючі області контакту. У цих областях виникають значні концентрації напружень та нагрів речовини з утворенням нової фази. Теплове управління механохімічною реакцією полягає у підтримці оптимального балансу дисипативного тепла та тепла від теплоносія у черв’ячному реакторі для того, щоб швидкість протікання та кінцевий продукт реакції задовольняли поставленим технічним умовам. Надані у статті формули для розрахунку коефіцієнту швидкості механохімічної реакції, теплообміну між черв’ячним реактором та каналом рубашки, теплообміну між рубашкою та оточуючим середовищем дозволяють розрахувати умови балансу для теплового управління. Блок-схема технологічної лінії, що представлена у статті, є економічно вигіднішою у зрівнянні з проведенням цієї ж реакції у розчиннику. Економічна вигода полягає в елімінуванні стадій введення та видалення розчинника з продукту реакції. На завершення зазначено, що механохімічна реакція перетворення суміші двох дисперсних матеріалів, що складається з твердих часток, у рідину може бути реалізована у непереривних умовах у потоковому режимі у черв’ячній машині. А теплове керування ходом механохімічної реакції можна здійснити за допомогою керованого теплообміну з теплоносієм у рубашці в умовах погілковій просторової дисперсії.Документ Очищення газових викидів мобільними комплексами для переробки твердих побутових відходів(Національний університет "Львівська політехніка", 2016) Ровенський, Олександр Іванович; Ведь, Валерій Євгенович; Капустенко, Петро ОлексійовичThe world tendency for municipal and combustible industrial wastes utilization showed, that thermal processing methods have bigger energy saving level, less expensive for implementation and highly efficient for application in such conditions. The paper presents the developed waste utilizing units for hard domestic waste processing, which can be designed in stationary or mobile modes. The use of catalytic units for waste gases capture enables to decrease the hazardous pollution emissions to the environment.Документ Пінч-інтеграційна оптимізація теплообмінної мережі процесу концентрування гідролізної сірчаної кислоти(Національний технічний університет "Харківський політехнічний інститут", 2022) Ведь, Валерій Євгенович; Миронов, Антон Миколайович; Ільченко, Марія Володимирівна; Горбунов, Костянтин Олександрович; Пономаренко, Ганна Володимирівна; Скляров, І. С.У роботі розглядається питання можливості збереження теплової енергії на промисловому підприємстві. У якості засобу оптимізації енергоспоживання використаний один з методів інтеграції хіміко-технологічних процесів – пінч-аналіз. Встановлено, що проблеми значного споживання енергії є актуальними для дослідників та промисловців в усьому світі, а їх вирішення науковці бачать перш за усе у розвитку альтернативних джерел енергетики та сучасних способах енергозаощадження з добре прогнозованими результатами. Вказано, що цільові функції при цьому можуть бути комбінованими: фінансово-енергетичними та енерго-екологічними, оскільки саме такі результати забезпечуються самою сутністю енергоресурозбереження, яке застосовується до промислового процесу. На початковому етапі дослідження проведено аналіз структури споживання теплової енергії апаратами у процесі концентрування гідролізної сірчаної кислоти. За його результатами встановлено, що наявна мінімальна різниця температур у системі є далекою від оптимального та технічно досяжного значення. З огляду на підтверджений енергозберігаючий потенціал було оцінено його величину. Для цього розрахунковим шляхом встановлено значення присутньої у системі рекуперації тепла, а також визначено обсяг енергії, яка поступає від зовнішніх теплоносіїв та холодоагентів. За результатами обчислень побудовано сіткову діаграму та складові криві вказаного технологічного процесу. На другому етапі проведені оптимізаційні заходи, які почалися з вибору нового, меншого значення мінімальної різниці температур для усієї теплообмінної мережі цієї промислової установки. Для згаданого значення побудовано зрушені складові криві та розроблено оновлену сіткову діаграму. У інтегрованій мережі теплообміну присутні три додаткові рекуперативні теплообмінники та переглянуті режими роботи тих апаратів, які було прийнято рішення залишити. За результатами оптимізації спроектовано технологічну схему процесу концентрування гідролізної сірчаної кислоти зі збереженням ключових елементів виробничої технології. Підсумком роботи є оптимізована теплообмінна мережа відділення промислового підприємства, яка дозволяє підвищити рекуперацію теплової енергії на 32,7 %, при цьому зменшивши витрату зовнішніх гарячих теплоносіїв на 30,3 %, а також зовнішніх холодоагентів – на 50,1 %. Отримані результати свідчать про дуже високу економічну ефективність та перспективність запровадження означеного проекту до виробництва.Документ Вивчення впливу радіаційної складової на величину ефективної теплопровідності композитно-пористого масиву(Одеська державна академія харчових технологій, 2018) Товажнянський, Леонід Леонідович; Ведь, Валерій Євгенович; Миронов, Антон МиколайовичВ роботі розглянуто низку питань, пов’язаних з теплообмінними процесами, які відбуваються у промислових вуглевипалювальних установках. Дослідження спрямоване на пошук розрахункового алгоритму, який здатен еквівалентно врахувати вплив структури композитно-пористого тіла на коефіцієнт теплопровідності масиву, сформованого деревними полінцями у просторі вагонетки. Показано, що відома феноменологічна модель процесу теплопровідності, яка базується на концепції суцільності твердих тіл, не придатна до використання у контексті розрахунку внеску ступеню пористості матеріалу до його теплопровідної здатності. Вказано, що подібна модель ігнорує не тільки структурну будову реальних матеріалів, але й можливість формування анізотропних кластерних утворень в їх товщі. Виявлено, що для масиву деревини, який приймає участь у виробництві деревного вугілля піролізним способом, спрощення мікроскопічної структури не припускається. Проаналізовано кілька способів завантаження деревної сировини у вагонетку та відсоток об’єму, що може бути корисно використаний у кожному з них. Обрано найбільш технологічно та експлуатаційно доцільний спосіб завантаження деревної сировини. Розглянуто відому розрахункову модель, що базується на рівномірному розподілі твердої фази уздовж меж структурного елементу. Встановлено, що при межових значеннях подібна модель демонструє результати, що не відповідають фізичній дійсності. Виявлено причини неадекватності моделі реальним об’єктам на прикладі масиву деревних полін. Представлено вдосконалену розрахункову модель, що передбачає заміну лінійного контакту між елементами на поверхневий. Розглянуто штучні умови розрахункового припущення про те, що безкінечно тонкий прошарок матеріалу розташований уздовж меж структурного елементу, а уся маса матеріалу зосереджена у центрі в вигляді об’єкту квадратного перетину. Наведено детальний алгоритм розрахунку еквівалентного значення коефіцієнту теплопровідності деревного масиву. На основі зазначених досліджень підтверджено доцільність застосування нового підходу, який дозволяє врахувати величину впливу радіаційної складової на сукупне значення ефективної теплопровідності композитно-пористого матеріалу.Документ Спосіб отримання енергетичних ресурсів з потоків викидних газів ракетних двигунів(ДП "Український інститут інтелектуальної власності", 2020) Толчинський, Юрій Аврамович; Товажнянський, Леонід Леонідович; Ведь, Валерій Євгенович; Перевертайленко, Олександр ЮрійовичСпосіб отримання енергетичних ресурсів з потоку викидних газів ракетного двигуна включає спрямування потоку викидних газів до системи каналів, які складаються з конфузорної частини, прямої ділянки та дифузорної частини, впорскування охолоджуючої води та подачу повітря у потік викидних газів. Стінки системи каналів охолоджують, а утилізовану енергію викидних газів акумулюють. Для охолодження стінок системи каналів застосовують щонайменше два потоки охолоджувальних рідин, які подають у окремі замкнені канали, обмежені теплопередаючими стінками та розташовані концентрично відносно потоку викидних газів. Охолоджувальні рідини вибирають таким чином, що теплота утворення парів охолоджувальної рідини у найближчому до потоку викидних газів каналі є найбільшою. Тепло, відведене від охолоджувальних рідин, використовують.Документ Спосіб проведення піролізу фруктових кісточок(ДП "Український інститут інтелектуальної власності", 2019) Толчинський, Юрій Аврамович; Перевертайленко, Олександр Юрійович; Товажнянський, Леонід Леонідович; Ведь, Валерій ЄвгеновичСпосіб проведення піролізу фруктових кісточок включає попереднє сушіння сировини, відділенні ядер кісточок від кісткової оболонки, відділення внутрішньокісткової плівки та власне процес піролізу кісткової оболонки з виділенням біовуглецю, олій та летких речовин, причому процес піролізу проводиться у шнекових апаратах із зовнішнім обігрівом у дві послідовні стадії, на другій стадії підтримують температуру процесу вищу, ніж на першій. На першій стадії матеріал, який підлягає піролізу, переміщують вздовж шнекового апарату шляхом обертання вала шнека, при цьому корпус шнекового апарату є нерухомим, а на другій стадії матеріал, що підлягає піролізу, переміщують вздовж шнекового апарату шляхом обертання корпусу шнекового апарату, при цьому вал шнека залишається нерухомим.Документ Спосіб покращення роботи радіатора та зниження температури викидних газів двигунів наземних транспортних засобів(ДП "Український інститут інтелектуальної власності", 2019) Толчинський, Юрій Аврамович; Перевертайленко, Олександр Юрійович; Товажнянський, Леонід Леонідович; Ведь, Валерій ЄвгеновичСпосіб покращення роботи радіатора та зниження температури викидних газів двигунів наземних транспортних засобів полягає у відборі щонайменше частини охолоджуючого повітря після радіатору та його подачі до вихрової труби, в якій повітря розділяється на теплий та холодний потоки. Застосовують низьконапірну вихрову трубу; одну частину повітря з вихрової труби змішують із потоком повітря, що подається на радіатор, а іншу частину повітря, з вихрової труби змішують з викидними газами двигуна; при цьому вибір холодної або теплої частини розділеного у вихровій трубі повітря, що йде на змішування, здійснюють залежно від температури довколишнього повітря.Документ Спосіб виробництва рибної муки(ДП "Український інститут інтелектуальної власності", 2019) Перевертайленко, Олександр Юрійович; Толчинський, Юрій Аврамович; Товажнянський, Леонід Леонідович; Ведь, Валерій ЄвгеновичСпосіб виробництва рибної муки включає подрібнення та термообробку вихідної сировини, його подальше пресування, що здійснюються у дві послідовні стадії, розділення пресованого матеріалу на тверду вологу масу та суспензію, сушіння твердої вологої маси, центрифугування та сепарацію суспензії з утворенням кеку та клейової води, випарювання клейової води з утворенням концентрату. Утворений при центрифугуванні кек направляють на другу стадію пресування, а концентрат, утворений при випарюванні клейової води, направляють на першу стадію пресування.Документ Методологія проектування каталітичних нейтралізаторів газових викидів(Національний технічний університет "Харківський політехнічний інститут", 2019) Ведь, Валерій Євгенович; Гавенко, Л. Р.; Рудько, Т. М.