Кафедра "Інтегровані технології, процеси і апарати"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1789

Офіційний сайт кафедри http://web.kpi.kharkov.ua/itpa

Від 2005 року кафедра має назву "Інтегровані технології, процеси і апарати", первісна назва – кафедра загальної хімічної технології, процесів і апаратів.

Кафедра загальної хімічної технології, процесів і апаратів створена в 1933 році, а очолив її професор Максим Ісидорович Некрич, який у свій час закінчив Паризький університет – Сорбонну (Франція). Але ще в 1927 році професор М. Д. Зуєв починає читати студентам курс загальної хімічної технології, доповнюючи його розрахунком процесів і апаратів, а також контрольно-вимірювальних приладів. У 1964 році від кафедри загальної хімічної технології, процесів і апаратів відокремилася нова кафедра – "Автоматизації хімічних виробництв".

Від 1977 року кафедру очолював Леонід Леонідович Товажнянський, кандидат технічних наук, доцент, на той час проректор ХПІ, а згодом – доктор технічних наук, професор, Заслужений діяч науки і техніки України, Заслужений працівник вищої школи, лауреат Державної премії, Дійсний член Академії наук вищої школи України, ректор НТУ «ХПІ». Виконувачем обов’язків завідувача кафедри у період з 1977 по 1981 роки був І. С. Чернишов.

Від 1 лютого 2018-го року кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 12 кандидатів технічних наук; 2 співробітника мають звання професора, 11 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Теплова інтеграція компресійної холодильної установки на молочних підприємствах
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Биканов, Сергій Миколайович; Бабак, Тетяна Геннадіївна; Стоцький, Роман Сергійович
    За допомогою методів пінч-аналізу проведено теплову інтеграцію аміачної компресійної холодильної установки, яка використовується на молочних виробництвах. За основу взята принципова схема з холодопродуктивністю 1000 кВт. Для даної холодопродуктивності було розраховано основні температури циклу, витрату холодоагенту, його питому теплоємність. На основі цих даних сформовано потокову таблицю, що включала гарячий потік холодоагенту – аміаку – і два холодних потоки: воду на хімводоочистку і воду на технологію. Гарячий потік аміаку було розбито на три потоки: охолодження парів аміаку, конденсація і переохолодження. Було визначено потокові теплоємкості і теплове навантаження (зміну тепловмісту) потоків. На основі техніко-економічних розрахунків для даної схеми визначено мінімальну різницю температур в теплообмінному обладнанні Tmin = 8С, для якої було побудовано складені криві потоків. За допомогою метода табличного алгоритму визначено температуру пінча для гарячих і для холодних потоків. Визначено мінімальні значення потужності гарячих та холодних утилітQHmin і QСmin та потужність рекуперації, яка склала 701,8 кВт. Побудовано сіткову діаграму і розташовано теплообмінники у відповідності із СР та N правилами. На основі сіткової діаграми запропоновано технологічну схему після реконструкції, яка включає встановлення трьох рекуперативних теплообмінників, одного охолоджувача та двох нагрівачів для досягнення цільових температур і витрати потоків. В якості теплообмінного обладнання запропоновано використання пластинчатих теплообмінників фірми Alfa Laval. Строк окупності запропонованого рішення складає приблизно два роки.
  • Ескіз
    Документ
    Интенсивные и энергосберегающие выпарные аппараты с пластинчатой греющей камерой
    (НТУ "ХПИ", 2018) Данилов, Юрий Борисович; Быканов, Сергей Николаевич; Гапонова, Елена Александровна; Нагорный, Андрей Олегович; Русинов, Александр Иванович
    Рассмотрены современные разработки выпарных аппаратов с пластинчатыми греющими камерами для производств, связанных с концентрированием растворов едкого натра, фосфорной кислоты, утилизацией хлоридных стоков. Приведены различные варианты размещения пластинчатой греющей камеры в выпарном аппарате. Рассмотрено конструкцию пластинчатой греющей камеры, показаны пластины секции выпаривания, отмечено, что каждая секция имеет три пластины. Показано компоновку пластин и сечение выпарного аппарата. Отмечено, что благодаря компоновке трех специальных пластин получается секция, в которой осуществляется перегрев раствора и его вскипание, отделение вторичного пара с направлением его на нагрев следующей секции и перетекание частично упаренного раствора на следующую ступень выпаривания. Последовательная компоновка секций позволяет создать выпарной аппарат с многократным использованием тепла греющего пара, при этом количество секций определяет кратность использования тепла греющего пара и его экономию на единицу выпаренной воды. Представленные конструктивные решения по созданию новых интенсивных пластинчатых выпарных аппаратов позволяют значительно усовершенствовать процессы концентрирования растворов с учетом их физико-химических характеристик, солеотложений на греющих поверхностях и коррозионной агрессивности растворов. Предложенные технические решения имеют конструктивные решения, материальное исполнение и технологию изготовления.