Кафедра "Технічна електрохімія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/3034

p>Офіційний сайт кафедри https://web.kpi.kharkov.ua/dte

Кафедра "Технічна електрохімія" була заснована в 1930 році в Харківському хіміко-технологічному інституті. У 1931 році її очолив М. А. Рабінович.

Кафедра технології електрохімічних виробництв почала самостійно функціонувати з 1926 року під керівництвом А. В. Терещенка, але офіційно була затверджена лише в 1930 році.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 7 кандидатів технічних наук; 1 співробітник має звання професора, 6 – доцента 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Обґрунтування складу електроліту в електрохімічному синтезі пероксимолочної кислоти
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Водолажченко, Сергій Олександрович; Дерібо, Світлана Германівна; Школьнікова, Тетяна Василівна; Шахін, Іссам Хуссейн
    Пероксимолочна кислота (ПОМК) є сильним дезінфектантом з широким спектром антимікробної активності. Її широке застосування гальмується через відсутність електрохімічної технології синтезу ПОМК, що дозволить розробити локальні електрохімічні генератори для виробництва дезінфектантів на її основі. Для аналізу вольт-амперних залежностей перебігу суміщених анодних процесів був застосований термодинамічний аналіз рівноважних потенціалів. Відомості про стандартний потенціал системи СН₃СH(OH)С(=О)ОН ↔ СН₃СH(OH)С(=О)ООН відсутні, як в довідковій літературі, так і в фахових наукових виданнях. Показано, що електрохімічний синтез ПОМК є суміщеним з процесами виділення кисню та утворення пероксиду водню. Для гальмування перебігу побічних процесів застосована добавка до розчину молочної кислоти 0,5 моль дм⁻³H₂SO₄. Адсорбція сульфат іонів призводить до витіснення певної частки молекул води за межі між фазної границі. Також відмічено збільшення майже в 2 рази анодної густини струму при потенціалах електрохімічного синтезу пероксисполук. Встановлено, що молекула молочної кислоти вбудовується в структуру приелектродного шару з спрямованою до поверхні аноду карбоксильною групою. Перегин вольт амперної залежності, при потенціалах більш позитивних за 1,70…1,75 В, вказує на перебіг суміщених процесів утворення пероксисполук, які перебігають зі значним гальмуванням кисневої реакції на Pt/PtO2 аноді. Виділення кисню в цих умовах відбувається через утворення і розклад Н₂О₂. Різниця потенціалів прямого і зворотнього ходу вольт амперних залежностей вказує на значний вплив молочної кислоти на адсорбційні процеси на поверхні аноду. Одержані результати підтвердили обґрунтованість вибору Pt/PtO₂ аноду для електрохімічного синтезу ПОМК. Обґрунтовано склад електроліту для електрохімічного синтезу ПОМК: 2 моль дм⁻³ молочної кислоти, 0,5 моль дм⁻³ сульфатної кислоти.
  • Ескіз
    Документ
    The anodic oxidation of dimethyl sulfoxide
    (Бондаренко М. О., 2017) Matrunchyk, O. L.; Bilous, T. A.; Tulskaya, A. G.
  • Ескіз
    Документ
    Влияние каталитически активных покрытий на свойства газодиффузионного электрода
    (НТУ "ХПИ", 2016) Тульский, Геннадий Георгиевич; Терещенко, Анастасия Артуровна; Тульская, Алена Геннадьевна; Березовский, Игорь Сергеевич
    Исследован процесс электровосстановления кислорода до пероксида водорода в кислых растворах с применением газодиффузионного электрода. Скорость накопления пероксида водорода определяется в большей мере скоростью дальнейшего восстановления Н₂О₂ до воды, которая в свою очередь зависит от концентрации перекиси и катионов водорода в объеме электрода. Обоснован выбор материала рабочего электрода при электрохимическом синтезе Н₂О₂. Для исследований был выбран газодиффузионный электрод, состоящий из углеродного материала с нанесенным на его поверхность катализатором. В качестве каталитически активных покрытий в данной работе были использованы следующие материалы: RuO₂, MoO₃, WO₃ и активный углерод (АУ).