Кафедра "Інформатика та інтелектуальна власність"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7444

Офіційний сайт кафедри http://web.kpi.kharkov.ua/iip

Кафедра "Інформатика та інтелектуальна власність" створена 12 травня 1999 року на факультеті "Комп'ютерні та інформаційні технології".

Саме в НТУ “ХПІ” на спеціальному факультеті патентознавства Міжгалузевого інституту післядипломної освіти, у той час – підвищення кваліфікації, у 1992 році було розпочато перепідготовку спеціалістів відповідної кваліфікації, що стало початком створення національної системи підготовки кадрів для сфери інтелектуальної власності України.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут".

Від 2019 року НТУ "ХПІ" та Науково-дослідний інститут інтелектуальної власності Національної академії правових наук України створтли на кафедрі "Інформатика та інтелектуальна власність" спільний Науково-освітній центр "Цифрова інтелектуальна власність".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 6 кандидатів технічних наук, 1 – історичних, 1 – юридичних; 1 співробітник має звання професора, 7 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Improving a neural network model for semantic segmentation of images of monitored objects in aerial photographs
    (PC Technology Center, 2021) Slyusar, V.; Protsenko, M.; Chernukha, A.; Melkin, V.; Petrova, O.; Kravtsov, M.; Velma, S.; Kosenko, N.; Sydorenko, O.; Sobol, Maksym
    This paper considers a model of the neural network for semantically segmenting the images of monitored objects on aerial photographs. Unmanned aerial vehicles monitor objects by analyzing (processing) aerial photographs and video streams. The results of aerial photography are processed by the operator in a manual mode; however, there are objective difficulties associated with the operator's handling a large number of aerial photographs, which is why it is advisable to automate this process. Analysis of the models showed that to perform the task of semantic segmentation of images of monitored objects on aerial photographs, the U-Net model (Germany), which is a convolutional neural network, is most suitable as a basic model. This model has been improved by using a wavelet layer and the optimal values of the model training parameters: speed (step) ‒ 0.001, the number of epochs ‒ 60, the optimization algorithm ‒ Adam. The training was conducted by a set of segmented images acquired from aerial photographs (with a resolution of 6,000×4,000 pixels) by the Image Labeler software in the mathematical programming environment MATLAB R2020b (USA). As a result, a new model for semantically segmenting the images of monitored objects on aerial photographs with the proposed name U-NetWavelet was built. The effectiveness of the improved model was investigated using an example of processing 80 aerial photographs. The accuracy, sensitivity, and segmentation error were selected as the main indicators of the model's efficiency. The use of a modified wavelet layer has made it possible to adapt the size of an aerial photograph to the parameters of the input layer of the neural network, to improve the efficiency of image segmentation in aerial photographs; the application of a convolutional neural network has allowed this process to be automatic.