2022 № 96 Різання та інструменти в технологічних системах
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65925
Переглянути
2 результатів
Результати пошуку
Документ Evaluation of performance efficiency of packing a group of products in the workplace of additive machine using a genetic algorithm(Національний технічний університет "Харківський політехнічний інститут", 2022) Garachenko, Ya.Research results of possibilities of packing a group of 3D-models of products in a layered build space using a genetic algorithm are presented. It is proposed to determine the efficiency of the optimization problem of rational arrangement of 3D-models group in the workspace of additive machines depending on the number of loaded products. Condition for efficient use of the layered build workspace is the minimum number of layers per product and the largest relative filling. Such criteria are important, for example, for SLS/SLM technologies. Examples of evaluation based on the analysis of derived voxel 3D model of the workspace with located products are considered. Industrial products with different geometrical complexity were selected as test 3D models. This approach allowed to perform a comparative analysis of the results depending on the design features of products. The practical realization was performed in the subsystem of packing 3D-models in a workspace, which is part of the technological preparation system for the manufacture of complex products by additive methods. This system was developed at the Department of "Integrated Technologies of Mechanical Engineering" named after M. Semko of NTU "KhPI".Документ Methodology for developing an expert system for the grinding of superhard materials(Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, V. A.; Pyzhov, Ivan; Ostroverkh, Y.; Pupan, L. I.; Garachenko, Ya.An expert system of the grinding process has been developed, which makes it possible to predict and optimize the process of defect-free processing of both existing and newly created superhard materials. The expert system consists oftwo interconnected modules - theoretical and experimental. The theoretical module ofthe expert system allows, at a given level of significance, to determine the values of the output indicators and the kinetics of their change in the process of adaptability, depending on the physical and mechanical properties of the interacting materials and processing conditions. The experimental module of the expert system allows you to coordinate and correct the results of theoretical calculations when determining the optimal grinding and operating conditions for processing various grades of superhard materials. When optimizing the sharpening process of a blade tool, processing efficiency, consumption of diamond wheels, cost price and various quality indicators of its cutting elements can be selected as a criterion. The use of the expert system significantly reduces the amount of expensive and laborious researches in determining the optimal processing conditions for various grades of superhard materials (SHM), including newly created ones.