Кафедра "Електричні апарати"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/43

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ea

Кафедра "Електричні апарати" була створена в 1931 році при Харківському електротехнічному інституті. Засновником, організатором і першим завідувачем кафедри був видатний фахівець в галузі електротехніки професор Вашура Борис Федорович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут", веде підготовку фахівців що мають глибокі знання з електромеханіки та різнобічні знання в області комп’ютерної техніки й інформаційних технологій.

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 6 кандидатів технічних наук, 1 кандидат фізико-математичних наук; 5 співробітників мають звання доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    On-line voltage stability evaluation using neuro-fuzzy inference system and moth-flame optimization algorithm
    (Национальный технический университет "Харьковский политехнический институт", 2019) Bourzami, Arif; Amroune, Mohammed; Bouktir, Tarek
    In recent years, the problem of voltage instability has received specialattention from many utilities and researchers. The present paper deals with the on-line evaluation of voltage stability in power system using Adaptive Neuro-Fuzzy Inference System (ANFIS). The developed ANFIS model takes the voltage magnitudes and their phases obtained from the weak buses in the system as input variables. The weak buses identification is formulated as an optimization problem considering the operating cost, the real power losses and the voltage stability index. The recently developed Moth-Flame Optimization (MFO) algorithm was adapted to solve this optimization problem. The validation of the proposed on-line voltage stability assessment approach was carried out on IEEE30-bus and IEEE 118-bus test systems. The obtained results show that the proposed approach can achieve a higher accuracy compared to the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks.