Кафедра "Електричні апарати"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/43

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ea

Кафедра "Електричні апарати" була створена в 1931 році при Харківському електротехнічному інституті. Засновником, організатором і першим завідувачем кафедри був видатний фахівець в галузі електротехніки професор Вашура Борис Федорович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут", веде підготовку фахівців що мають глибокі знання з електромеханіки та різнобічні знання в області комп’ютерної техніки й інформаційних технологій.

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 6 кандидатів технічних наук, 1 кандидат фізико-математичних наук; 5 співробітників мають звання доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 7 з 7
  • Документ
    New design of a fast Thomson drive actuator based on permanent magnets: multiphysics simulation
    (Technischen Universität Graz, Austria, 2024) Baida, Yevgen I.; Lytvynenko, V. V.; Chepeliuk, O. O.; Leliuk, M. A.; Clemens, Markus; Pantelyat, Michael G.
    A mathematical model of a new design of a fast Thomson drive actuator for electrical devices of DC networks with two coils and a histable clamp based on permanent magnets is presented. The multiphysics problem includes the calculatoin of the static magnetic field, the electrical circuit taking into accaunt the change in voltage on the capacitor and the back-EMF inducendin the coils, the dynamics of the movement of the armatures of the bistable clamp and the drive, taking into account the change in mass at the moment of opening the contacts, the transient electromagnetic field in a non uniform nonlianer medium, taking into account permanent magnets and the movement of conducting bodies in the transient electromagnetic field. Finite element method simulations involve axisymmetric formulations on a deformable mesh.
  • Ескіз
    Документ
    Influence of cuts in the housing and armature of the forced electromagnet of the fuel injection system on its speed
    (VSB-Technical University of Ostrava, 2023) Bajda, Yevgen I.; Pantelyat, Michael G.; Vyrovets, S. V.
    Electromagnetic mechanisms are widely used in various systems due to the simplicity of their design and reliability in operation. One such system is the fuel injection system for an internal combustion engine. The electromagnets installed in such systems should have a number of special properties: they should have small dimensions, high speed, which is ensured by forcing, a small mass of moving elements, an increased residual air gap, a small armature stroke and minimal eddy currents in the magnetic core. The reduction of eddy currents is carried out by the use of steels with increased resistivity and special cuts in the housing and armature, which significantly complicates the design of the electromagnet, but is an effective approach for re ducing losses in DC electromagnetic systems. To assess the influence of the design of an electromagnet on its speed, the article present a comparative analysis of the solution of the problem of dynamics in a 3D formulation for a forced armored DC electromagnet and an improved electromagnet with reduced eddy current losses due to special structural cuts in the housing and armature.
  • Ескіз
    Документ
    A refined mathematical model of physical processes in a conductor at a high-current pulse discharge
    (Харківський національний університет міського господарства імені О. М. Бекетова, 2021) Bajda, Yevgen I.; Pantelyat, Michael G.
    A novel mathematical model describing physical processes during the flow of an aperiodic pulse current with amplitude of 100 kA along a conductor with a circular cross-section is proposed and investigated. It is shown how a short-term electric discharge of an aperiodic shape affects the distribution of the current density in the cross-section of the conductor, causing its nonuniform heating and the appearance of significant thermal forces as well as mechanical stresses and strains. Based on the developed mathematical model, the relationship between electromagnetic, thermal and mechanical phenomena is shown, allowing a deeper understanding of the multiphysics processes taking place. The maximum values of the current density are calculated, which on the surface of the conductor reach values of 47 kA/mm2, while the temperature rise of a copper conductor with a diameter of 2.44 mm is no more than 80ºC at high temperature gradients, which causes the appearance of thermal stresses that have value (40–50)% of the value of the short-term strength limit of electrical copper. Utilization of this model allows to more accurately determine the required conductor cross-section based on the characteristics of electromagnetic, thermal and mechanical processes. It is shown that the simplified model (the condition for the uniform distribution of the current over the cross-section) gives significantly underestimated values of temperatures and does not take into account temperature deformations.
  • Ескіз
    Документ
    Multiphysics Models of Innovative Actuators of LV and MV Vacuum Circuit Breakers
    (Technischen Universität Graz, Austria, 2020) Baida, Evgeniy Ivanovich; Vyrovets, S. V.; Pantelyat, Michael G.; Clemens, Markus
  • Ескіз
    Документ
    Lumped Parameter and Circuit Models of Electromechanical Switching Device Electromagnet
    (Technischen Universität Graz, Austria, 2020) Bajda, Yevgen I.; Clemens, Markus; Pantelyat, Michael G.; Korol, Olena G.
    Forced DC electromagnets are widely used in modern electromechanical switching devices. In cases, where the total costs of simulation of high-fidelity electromagnetic field's 3D and even 2D models are unacceptably high, alternative techniques based on lumped parameters and magnetic circuit models of switching device electromagnets can be used. The paper presents a technique for calculating the dynamics of forced DC electromagnets using the Maple code as an example of simulation of the magnetic circuit of an electromagnet used in vacuum contactors.
  • Ескіз
    Документ
    Challenges of dynamic simulationof high-speed electromagnetic valves of gas distribution devices
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Baida, Evgeniy Ivanovich; Klymenko, Boris Vladimirovich; Pantelyat, Michael G.; Yelanskyi, Yu. A.; Trichet, D.; Wasselynck, G.
    High-speed electromagnetic valves of gas distribution devices are used in modern missile and space technology as jet micro-motors of the executive elements of missile stabilization systems, as well as to control the movement of spacecrafts in space. The problem of creating such valves which are simple and reliable in the operation is relevant. In this work, it is proposed at the development and design stage to perform computer modelling of mutually coupled electromechanical processes, such as: distribution of transient electromagnetic field, transients in anelectric circuit, and movement of an electromagnet armature. Besides, the calculation of the force with which the compressed gas acts on the corresponding structural elements of the valve is proposed to be performed by solving the system of Navier-Stokes equations. All problems are solved by numerical methods in axisymmetrical formulation with the corresponding initial and boundary conditions. Improvement of the accuracy of electromagnetic calculations and taking into account the movement of the armature of an electromagnet in the process of multiphysics numerical simulation is achievedusing so-called tunable elastic meshes. The paper presents a comparative analysis of the numerical results obtained for several designs of electromagnets. The features of the dynamics of high-speed electromagnets of gas distribution valves during on and off operations are analyzed, the corresponding dynamic characteristics calculated using the proposed technique are presented.
  • Ескіз
    Документ
    Investigations of the dynamics of a bistable electromagnet with improved characteristics for medium voltage vacuum circuit breakers
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Baida, Evgeniy Ivanovich; Klymenko, Boris Vladimirovich; Vyrovets, S. V.; Pantelyat, Michael G.; Clemens, M.
    Introduction. Currently, for switching medium voltage circuits, vacuum circuit breakers are widely used, which have good arcing properties and high breaking capacity. One of the problems of creating the drive mechanism of such apparatus is the need to ensure the absence of contact welding when a through current of a short circuit of a given duration flows through them, which is achieved due to a certain amount of contact pressure. One of the problems arising in the design of circuit breakers is the need to fix the mechanism with a mechanical lock, which should hold the mechanism securely. This leads to significant specific mechanical loads, which in turn reduces the reliability of the circuit breaker. One way to solve these problems is to create a drive based on monostable or bistable electromagnetic actuators with highly coercive permanent magnets, which provide reliable fixation of the position of the contacts. Purpose. Investigation of the improved design of a bistable electromagnetic actuator based on permanent magnets of a medium voltage vacuum circuit breaker. Methods. Theoretical and experimental research and comparative analysis of existing and developed electromagnetic actuators. Conclusions. A new design of an electromagnetic bistable actuator with reduced overall dimensions is developed and tested. The electromechanical characteristics of the actuator correspond to the technical specifications, which is confirmed by both theoretical and experimental studies. The proposed actuator can be used as a drive mechanism for medium voltage vacuum circuit breakers.