Кафедра "Електричні апарати"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/43

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ea

Кафедра "Електричні апарати" була створена в 1931 році при Харківському електротехнічному інституті. Засновником, організатором і першим завідувачем кафедри був видатний фахівець в галузі електротехніки професор Вашура Борис Федорович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут", веде підготовку фахівців що мають глибокі знання з електромеханіки та різнобічні знання в області комп’ютерної техніки й інформаційних технологій.

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 6 кандидатів технічних наук, 1 кандидат фізико-математичних наук; 5 співробітників мають звання доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Diagnosis and localization of fault for a neutral point clamped inverter in wind energy conversion system using artificial neural network technique
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Abid, Mimouna; Laribi, Souad; Larbi, M'hamed; Allaoui, Tayeb
    To attain high efficiency and reliability in the field of clean energy conversion, power electronics play a significant role in a wide range of applications. More effort is being made to increase the dependability of power electronics systems. Purpose. In order to avoid any undesirable effects or disturbances that negatively affect the continuity of service in the field of energy production, this research provides a fault detection technique for insulated-gate bipolar transistor open-circuit faults in a three-level diode-clamped inverter of a wind energy conversion system predicated on a doubly-fed induction generator. The novelty of the suggested work ensures the regulation of power exchanged between the system and the grid without faults, advanced intelligence approaches based on a multilayer artificial neural network are used to discover and locate this type of defect; the database is based on the module and phase angle of three-phase stator currents of induction generators. The proposed methods are designed for the detection of one or two open-circuit faults in the power switches of the side converter of a doubly-fed induction generator in a wind energy conversion system. Methods. In the proposed detection method, only the three-phase stator current module and phase angle are used to identify the faulty switch. The primary goal of this fault diagnosis system is to effectively detect and locate failures in one or even more neutral point clamped inverter switches. Practical value. The performance of the controllers is evaluated under different operating conditions of the power system, and the reliability, feasibility, and effectiveness of the proposed fault detection have been verified under various open-switch fault conditions. The diagnostic approach is also robust to transient conditions posed by changes in load and speed. The proposed diagnostic technique's performance and effectiveness are both proven by simulation in the SimPower /Simulink® MATLAB environment.
  • Ескіз
    Документ
    An improved sliding mode control for reduction of harmonic currents in grid system connected with a wind turbine equipped by a doubly-fed induction generator
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Bouraghda, Skander; Sebaa, Karim; Bechouat, Mohcen ; Sedraoui, Moussa
    The implementation of renewable energy resources into the electrical grid has increased significantly in recent years. Wind power is one of the existing resources. Presently, power electronics has become an indispensable tool in wind power plants. Problem. However the associated control usually has an impact on increasing the harmonic distortion, especially on the output voltage. Goal. This paper proposes a new sliding mode control strategy, applied on a rotor-side of a doubly-fed induction generator. The main goal is to meet the electrical power requirements, while responding to the power quality issues. Methodology. The wind energy conversion system must be able to not only track the maximum power point of the wind energy, but also to mitigate the harmonic currents caused by the non-linear loads. To achieve this goal, the power converters are driven by the proposed sliding mode control strategy. The corresponding two gains of the sliding surface are well selected using a particle swarm optimization algorithm. The particle swarm optimization algorithm solves a constrained optimization problem whose fitness function is a prior formulated as the sum of two mean square error criterions. The first criterion presents the tracking dynamic of the reference active power while the second one presents the tracking dynamic of the reference reactive power. The novelty lies in the implementation of the particle swarm optimization algorithm in conventional sliding mode control strategy, in which the proposed-improved sliding mode control strategy is developed. The wind energy conversion system control uses the principal of the vector oriented control to decouple the control of the active power from that of the reactive power. Results. The improved sliding mode control strategy is applied to control separately theses powers in the presence of non-linear loads. The energy assessment of this strategy is analysed using the wind energy conversion system model based on SimPower software. Originality. The obtained simulation results confirm the superiority of the proposed-improved sliding mode control strategy in terms of reference tracking dynamics and suppression of harmonic currents.