2024 № 1 Енергетика: надійність та енергоефективність
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/79785
Переглянути
Документ Використання пристроїв компенсації реактивної потужності при впровадженні розподіленої генерації(Національний технічний університет "Харківський політехнічний інститут", 2024) Данильченко, Дмитро Олексійович; Кузнецов, Дмитро СергійовичВ Україні заплановано поступове скорочення вироблення електроенергії на теплових електростанціях за рахунок розбудови відновлюваних джерел електроенергії. Відновлюються малі гідравлічні електростанції, споруджуються сонячні електростанції та вітрові електростанції. Це дозволить вирішити існуючі проблеми вітчизняної енергетики щодо дефіциту паливних ресурсів, енергетичної безпеки та зниження рівня шкідливого впливу на навколишнє середовище, викликане функціонуванням традиційних джерел електроенергії. Спостерігається тенденція переходу від чисто централізованого електропостачання до комбінованого, коли зростає кількість місцевих розосереджених джерел електроенергії безпосередньо в розподільних електричних мережах. Таким чином розподільчі електричні мережі поступово перетворюються в мережу з ознаками, характерними для локальної електричної системи, яка отримує живлення як від власних розподільчих електричних мереж, так і від централізованого джерела – електроенергетичної системи. Відновлювальна енергетика має ряд переваг, порівняно з традиційною, однак є і недоліки. Серед них слід виділити ускладнення функціонування електричних мереж у разі зростання в них встановлених потужностей відновлюваних джерел електроенергії та нестабільність генерування через природну їх залежність від метеорологічних умов, якщо говорити більш конкретно про технічні недоліки то це стосується – синусоїдності напруг і струмів та відхилень напруги, забезпечення якості електроенергії яке напряму залежить від забезпечення балансу по активній та реактивній потужності в електричній системі. Звідси слідує необхідність узгодженого електропостачання від відновлюваних джерел електроенергії і підстанцій електроенергетичної системи. Одночасно здійснюється поступовий перехід від оптового ринку електроенергії єдиного покупця до балансуючого ринку електроенергії та електропостачання за двосторонніми угодами, а також впровадження ринкових методів керування. В даній статті розглянуто заходи щодо зниження втрат електричної енергії, обмеження відхилення напруги, покращення якості електричної енергії та компенсації реактивної потужності локальних навантажень завдяки впровадженню пристроїв компенсації реактивної потужності разом з відновлювальними джерелами електроенергії та полегшення їх інтеграції в електромережу.Документ Дослідження теплового стану трансформатора в залежності від режиму роботи(Національний технічний університет "Харківський політехнічний інститут", 2024) Мешков, Тимофій Денисович; Данильченко, Дмитро Олексійович; Вольтер, МартінТочний аналіз та передбачення теплового стану трансформатора в залежності від режиму роботи, наприклад, в холодну зиму з дефіцитом електроенергії, дозволяє ефективно планувати регулярні технічні обслуговування. В ході роботи було створено математичні моделі для аналізу теплового стану трансформатора, зокрема це моделі для знаходження температури верхніх шарів масла та найвищої температури на обмотці трансформатора. Проведено верифікацію даних математичних моделей шляхом порівняння з вже ідентифікованою моделлю-аналогом. Визначено, що розбіжність між результатами становить не більше ніж 7 %. Встановлено, що на тепловий стан трансформатора температура навколишнього середовища впливає значно більше, ніж навантаження. Це пояснюється тим, що без випадків перенавантаження та аварійних ситуацій навантаження на трансформатор, залежно від пори року, змінюється не суттєво. Визначено, що найбільше зменшення строку та найвища температура на обмотці високої та низької напруги спостерігаються в серпні, що збігається з піком температури навколишнього середовища. Найнижча температура на обмотках, а також найнижче зменшення строку служби трансформатора спостерігаються в січні, що також корелює з найнижчими показниками температури навколишнього середовища. Визначено, що за таких умов експлуатації, враховуючи, що номінальний строк служби трансформатора становить 20 років, фактичний строк служби становитиме приблизно 90 років. Також встановлено, що взимку зменшення строку служби в 5 разів менше ніж влітку. Це дозволяє прогнозувати зниження потреби у технічному обслуговуванні в холодні місяці та більш інтенсивне технічне обслуговування влітку. Крім того, такі моделі дозволяють передбачати потенційні проблеми та аварійні ситуації, що може значно знизити ризики непередбачених відключень та підвищити надійність електропостачання. Регулярний моніторинг та аналіз теплового стану трансформатора дають можливість оперативно реагувати на зміни в умовах експлуатації та приймати своєчасні рішення щодо технічного обслуговування, що сприяє оптимізації витрат та підвищенню ефективності роботи електромереж.Документ Методики розрахунку вологорозрядних характеристик ізоляторів(Національний технічний університет "Харківський політехнічний інститут", 2024) Шевченко, Сергій Юрійович; Данильченко, Дмитро Олексійович; Ганус, Роман Олексійович; Варв'янська, Вікторія ВіталіївнаУ статті представлено детальний аналіз та порівняння методів розрахунку вологорозрядної напруги ізоляторів. Початкова частина роботи присвячена короткому огляду принципів, що лежать в основі розряду у повітрі вздовж поверхні ізоляторів, що є ключовим аспектом для розуміння вологорозрядних процесів. Розглядаються дві основні методики розрахунку вологорозрядної напруги. Перша методика базується на формулі Теплера, яка потребує використання специфічних вихідних даних, що можуть бути отримані лише експериментально. Цей підхід, хоч і є класичним, утруднює його практичне застосування через складність отримання необхідних параметрів у реальних умовах. Друга методика, описана у літературі, опирається на загальнодоступні дані, що значно спрощує процес розрахунку. На основі цієї методики було створено автоматизований інструмент для розрахунку вологорозрядних характеристик ізоляторів. Використання цього інструменту дозволяє знизити залежність від експериментальних даних, забезпечуючи точні результати з мінімальними витратами часу та ресурсів. Для ілюстрації ефективності запропонованого інструменту було проведено розрахунок вологорозрядних характеристик для ізолятора типу ЛК 70-110. За результатами аналізу, вологорозрядна напруга для цього ізолятора становить 549 кВ, а напруженість – 2,1 кВ на сантиметр довжини шляху струму витоку. Ці показники співпадають з середніми значеннями, отриманими за допомогою першої методики, що підтверджує надійність і точність нової методики. Зроблені висновки свідчать про те, що друга методика розрахунку є повністю задовільною для стандартних розрахунків ізоляторів. Вона також може бути застосована у специфічних умовах, таких як підземні підстанції, де точність і оперативність є критично важливими. Таким чином, запропонована методика розрахунку може стати ефективним інструментом для інженерів та науковців, що займаються проєктуванням та аналізом ізоляційних систем. Ця робота робить значний внесок у розробку та вдосконалення методів оцінки вологорозрядних характеристик ізоляторів, що є важливим кроком до підвищення надійності електричних мереж та безпеки їх експлуатації.