113 "Прикладна математика"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/50024
Переглянути
1 результатів
Результати пошуку
Документ Моделі і методи дослідження алгоритмів орієнтації для високодинамічних об'єктів(Національний технічний університет "Харківський політехнічний інститут", 2024) Гомозкова, Ірина ОлександрівнаМетою дисертаційної роботи є удосконалення математичного моделювання обертального руху твердого тіла за рахунок узагальнення методу аналітичних еталонних моделей, який базується на евристичному представленні кватерніона орієнтації у вигляді суперпозиції тригонометричних функцій лінійних кутів. Об'єкт дослідження – визначення орієнтації в бесплатформених інерціальних системах орієнтації. Предмет дослідження – моделювання обертального руху твердого тіла з використанням апарату кватерніонів і аналітичної механіки. У вступі доведено актуальність розробки моделей, які відтворюють специфічні типи кутового руху та оптимізації алгоритмів визначення орієнтації під такий рух об’єктів. Наведено зв’язок роботи з науковими програмами, планами і темами, наведено наукову новизну, представлено практичне значення отриманих результатів, надано інформацію щодо особистого внеску здобувача, представлено перелік публікацій за темою дисертації. У першому розділі детально описано принципи роботи обчислювального блоку безплатформенних інерціальних навігаційних систем, шлях їх розвитку та порівняння з іншими видами навігаційних систем. Наведено класифікацію існуючих алгоритмів визначення орієнтації. Перераховано джерела помилок, які виникають в таких системах та методики їх компенсації. Проаналізовано існуючі методи моделювання та тестування роботи обчислювального блоку. Обґрунтовано доцільність оптимізації безплатформенних систем навігації під характеристики руху сучасних об’єктів, приведено чисельну реалізацію моделей у вигляді траєкторій в конфігураційному просторі та залежностей від часу. У другому розділі описано принципи, за якими виконується математичне моделювання роботи обчислювального блоку безплатформенних систем навігації. Перераховано вимоги, які висуваються до таких моделей, враховуючи їх залежність від ступенів вільності об’єкта, який обертається. Сформовано основні задачі дисертаційної роботи. Побудовано нові еталонні моделі, які реалізують обертальний рух об’єкта та шляхом чисельного моделювання доведено, що кожна з них реалізує унікальні характеристики кутового руху, відмінні від класичних. Отримано розв’язки відповідних кінематичних рівнянь та системи динамічних рівнянь Ейлера. Останні грають важливу роль у задачах керування та переорієнтації об’єктів. У третьому розділі проведено оцінку точності роботи двох алгоритмів визначення орієнтації 4-го порядку точності. На основі отриманого результату, для подальшої реалізації обрано алгоритм Міллера. Знайдено нові значення параметрів цього алгоритма, за яких похибка дрейфу є меншою, ніж за класичних значень. Описано фактори, які призводять до зменшення фактичної точності алгоритма в порівнянні з математичною. Досліджено для розроблених моделей кутового руху значення модулів кутової швидкості, за яких досягається обрана точність алгоритма визначення орієнтації. У четвертому розділі сформовано чіткі характеристики високоманевреного об’єкта та доведено, що одна з розроблених моделей дозволяє відтворювати такий тип руху. Для цієї моделі знайдено ще один набір параметрів алгоритма Міллера, які у випадку високої швидкості обертання пристрою дають похибку дрейфа, меншу на 10-7 рад порівняно з класичними значенями параметрів (𝛼=3380; 𝛽=5780). Доведено, що нові чотирьохчастотні моделі враховують в собі вплив вібраційного оточення у вигляді гармонійних коливань. Для даного випадку знайдено нові, оптимізовані конкретно під такі умови параметри алгоритма Міллера. У п’ятому розділі описано програмний застосунок, розроблений для чисельної реалізації моделей. Написано програму мовою С++ з використанням елементів об’єктно-орієнтованого програмування. Вихідні дані автоматично записуються до Exel-файлу. В цьому ж файлі виконується побудова відповідних графіків залежностей. Перераховано основні вимоги для встановлення застосунку на кожному конкретному присторої. Описано характеристики та обмеження вхідних умов, необхідних для реалізації обчислень. У висновках перераховано головні результати наукової роботи, які є розв’язками сформованих теоретичних та прикладних задач дослідження. За результатами дослідження отримано такі наукові результати: 1. Розроблено сім нових еталонних кватерніонних моделей, які реалізують типи руху, відмінні від конічного обертання та регулярної прецесії. 2. Оптимізовано алгоритм визначення орієнтації Міллера, шляхом визначення трьох нових наборів параметрів та показано, за яких характеристик руху слід використовувати кожен з них. 3. Запропоновано механізм визначення реалізованого порядку точності алгоритма орієнтації. Для отриманих моделей кутового руху визначено найменше значення модуля кутової швидкості, за якого реалізована та математична точність алгоритма Міллера будуть рівними та відповідатимуть 4-му порядку. 4. Доведено, що одна з моделей реалізує рух об’єкта, який має високу кутову динаміку (обертання навколо однієї з осей більше 20 обертів в секунду). Вказано, що модуль кутової швидкості моделі при цьому має бути більший за 15 рад/сек. 5. Описано принцип роботи розробленого програмного доданку, який дозволяє проводити чисельні експерименти та отримувати візуалізацію обраного кутового руху. Результати отримуються у вигляді таблиці та відповідних графіків в Exel. Дослідження, результати яких викладені в дисертаційній роботі, виконані на кафедрі «Комп’ютерне моделювання процесів та систем» НТУ «ХПІ» відповідно до завдань держбюджетної теми МОН України (номер державної реєстрації проекту 0116U000875) за темою «Створення теоретичних основ для методів довговічності елементів конструкцій аерокосмічної техніки та точності систем управління рухом» (термін виконання 2018-2019 рр), в яких здобувач був виконавцем окремих етапів. Робота виконувалась у рамках проекту DAAD "Ukraine Digital: Studienerfolg in Krisenzeiten sichern (2022-2023)" (Німеччина). Результати дослідження підтвердили практичну та теоретичну цінність розроблених моделей та адаптацій алгоритму Міллера для складних кутових рухів, надано практичні рекомендації, щодо оптимальних значень модуля кутової швидкості, за яких реалізований порядок точністі алгоритма відповідає 4-му. The aim of the dissertation work is an improvement of the mathematical modeling of the rotational motion of a rigid body due to the generalization of the method of analytical reference models, which is based on the heuristic representation of the orientation quaternion in the form of a superposition of trigonometric functions of linear angles. The object of research is determination in strapdown inertial orientation systems. The subject of research is the simulation of the rotational motion of a rigid body using the quaternion apparatus and analytical mechanics. The introduction proves the relevance of developing models that reproduce specific types of angular movement and optimizing algorithms for determining the orientation for such movement of objects. The connection of the work with scientific programs, plans and topics is given, scientific novelty is given, the practical significance of the obtained results is presented, information is provided about the personal contribution of the recipient, a list of publications on the topic of the dissertation is presented. The first chapter describes in detail the principles of operation of the computing unit of platformless inertial navigation systems, the way of their development and comparison with other types of navigation systems. The classification of existing orientation determination algorithms is presented. Sources of errors that occur in such systems and methods of their compensation are listed. The existing methods of modeling and testing the operation of the computing unit are analyzed. The expediency of optimizing platformless navigation systems for the characteristics of the movement of modern objects is substantiated, the numerical implementation of models in the form of trajectories in the configuration space and time dependencies is given. The second chapter describes the principles by which mathematical modeling of the computing unit of platformless navigation systems is performed. The requirements for such models are listed, taking into account their dependence on the degrees of freedom of the rotating object. The main tasks of the dissertation have been formulated. New reference models have been built that realize the rotational motion of the object, and it has been proven through numerical simulation that each of them realizes unique characteristics of angular motion, different from the classical ones. The solutions of the corresponding kinematic equations and the Euler system of dynamic equations were obtained. The latter play an important role in the management and reorientation of objects. In the third section, the accuracy of two algorithms for determining the orientation of the 4th order of accuracy is evaluated. Based on the obtained result, Miller's algorithm was chosen for further implementation. New values of the parameters of this algorithm were found, for which the drift error is smaller than for classical values. The factors that lead to a decrease in the actual accuracy of the algorithm compared to the mathematical one are described. The values of the angular velocity modules, which achieve the chosen accuracy of the orientation determination algorithm, were studied for the developed angular motion models. In the fourth chapter, clear characteristics of a highly maneuverable object are formed and it is proved that one of the developed models allows to reproduce this type of movement. For this model, another set of parameters of the Miller algorithm was found, which in the case of a high rotation speed of the device give a drift error smaller by 10-7 rads compared to the classical parameter values ( 𝛼=3380; 𝛽=5780). It has been proven that the new four-frequency models take into account the influence of the vibrating environment in the form of harmonic oscillations. For this case, new parameters of the Miller algorithm were found, specifically optimized for such conditions. The fifth chapter describes the software application developed for the numerical implementation of the models. The program was written in the C++ language using elements of object-oriented programming. The output data is automatically saved to an Excel file. In the same file, construction of the corresponding graphs of dependencies is performed. The basic requirements for installing the application on each specific device are listed. The characteristics and limitations of the input conditions necessary for the implementation of calculations are described. The conclusions list the main results of the scientific work, which are solutions to the formed theoretical and applied research problems. According to the results of the research, the following scientific results were obtained: 1. Seven new reference quaternion models have been developed that implement types of motion other than conical rotation and regular precession. 2. Miller's orientation determination algorithm was optimized by defining three new sets of parameters and showing under which movement characteristics each of them should be used. 3. A mechanism for determining the implemented accuracy order of the orientation algorithm is proposed. For the received models of angular motion, the smallest value of the angular velocity module is determined, for which the implemented and mathematical accuracy of the Miller algorithm will be equal and correspond to the 4th order 4. I It has been proven that one of the models realizes the movement of an object that has high angular dynamics (rotation around one of the axes is more than 20 revolutions per second). It is indicated that the angular velocity module of the model should be greater than 15 rad/sec. 5. The principle of operation of the developed software application is described, which allows you to conduct numerical experiments and obtain a visualization of the selected angular motion. The results are obtained in the form of a table and corresponding graphs in Excel. The research, the results of which are presented in the dissertation, was carried out at the Department of "Computer Modeling of Processes and Systems" of NTU "KhPI" in accordance with the tasks of the state budget topic of the Ministry of Education and Culture of Ukraine (state registration number of the project 0116U000875) on the topic "Creation of theoretical foundations for methods of durability of structural elements of aerospace engineering and accuracy of motion control systems" (implementation period 2018-2019), in which the acquirer was the executor of individual stages. The work was carried out within the DAAD project "Ukraine Digital: Studienerfolg in Krisenzeiten sichern (2022-2023)" (Germany). The results of the study confirmed the practical and theoretical value of the developed models and adaptations of Miller's algorithm for complex angular movements, practical recommendations were given regarding the optimal values of the angular velocity module, for which the implemented order of accuracy of the algorithm corresponds to the 4th.